References
- Naik T. R. (2020). Sustainability of the cement and concrete industries. Sustainable Construction Materials and Technologies (pp. 19-25). CRC Press.
- Amin M., Tayeh, B. A., & Agwa, I. S. (2020). Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete. Journal of Cleaner Production, 273, 123073.
- Nagrockienė D., Girskas G., & Skripkiūnas G. (2017). Properties of concrete modified with mineral additives. Construction and Building Materials, 135, 37-42.
- Vishwakarma V., & Ramachandran D. (2018). Green Concrete mix using solid waste and nanoparticles as alternatives–A review. Construction and Building Materials, 162, 96-103.
- Hamza R. A., El-Haggar S., & Khedr S. (2011). Marble and granite waste: characterization and utilization in concrete bricks. International Journal of Bioscience, Biochemistry and Bioinformatics, 1(4), 286-291.
- Abouelnour M. A., Abd EL-Aziz M. A., Osman K. M., Fathy I. N., Tayeh B. A., & Elfakharany M. E. (2024). Recycling of marble and granite waste in concrete by incorporating nano alumina. Construction and Building Materials, 411, 134456.
- Costa F. N., & Ribeiro D. V. (2020). Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW). Journal of Cleaner Production, 276, 123302.
- Torres P., Fernandes H. R., Olhero S., & Ferreira J. M. F. (2009). Incorporation of wastes from granite rock cutting and polishing industries to produce roof tiles. Journal of the European Ceramic Society, 29(1), 23-30.
- Allen K. G., Von Backström T. W., Kröger D. G., & Kisters A. F. M. (2014). Rock bed storage for solar thermal power plants: Rock characteristics, suitability, and availability. Solar Energy Materials and Solar Cells, 126, 170-183.
- Sen G., & Sen G. (2014). Introduction to igneous rocks. Petrology: Principles and Practice, 19-49.
- Kemp S. J., Lewis A. L., & Rushton J. C. (2022). Detection and quantification of low levels of carbonate mineral species using thermogravimetric-mass spectrometry to validate CO2 drawdown via enhanced rock weathering. Applied Geochemistry, 146, 105465.
- Gautam L., Jain J. K., Kalla P., & Danish M. (2021). Sustainable utilization of granite waste in the production of green construction products: a review. Materials Today: Proceedings, 44, 4196-4203.
- Danish A., Mosaberpanah M. A., Salim M. U., Fediuk R., Rashid M. F., & Waqas R. M. (2021). Reusing marble and granite dust as cement replacement in cementitious composites: A review on sustainability benefits and critical challenges. Journal of Building Engineering, 44, 102600.
- Dobiszewska M., & Beycioğlu A. (2020). Physical Properties and Microstructure of Concrete with Waste Basalt Powder Addition. Materials, 13(16), 3503.
- Dobiszewska M., Schindler A. K., & Pichór W. (2018). Mechanical properties and interfacial transition zone microstructure of concrete with waste basalt powder addition. Construction and Building Materials, 177, 222-229.
- Binici H., Yardim Y., Aksogan O., Resatoglu R., Dincer A., & Karrpuz A. (2020). Durability properties of concretes made with sand and cement size basalt. Sustainable Materials and Technologies, 23, e00145.
- Brown D., Ryan P. D., DeBari S. M., & Greene A. R. (2011). Vertical stratification of composition, density, and inferred magmatic processes in exposed arc crustal sections. Arc-continent collision, 121-144.
- Kılıç A., Atiş C. D., Teymen A., Karahan O. K. A. N. Özcan F., Bilim C., & Özdemir M. E. T.(2008). The influence of aggregate type on the strength and abrasion resistance of high strength concrete. Cement and Concrete Composites, 30(4), 290-296.
- Baki V. A., Nayır S., Erdoğdu Ş., & Ustabaş İ. (2020). Determination of the pozzolanic activities of trachyte and rhyolite and comparison of the test methods implemented. International Journal of Civil Engineering, 18, 1053-1066.
- Afshinnia K., & Rangaraju P. R. (2016). Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete. Construction and Building Materials, 117, 263-272.
- Reubi O., & Blundy J. (2009). A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature, 461(7268), 1269-1273.
- Uzun İ., & Terzi S. (2012). Evaluation of andesite waste as mineral filler in asphaltic concrete mixture. Construction and Building Materials, 31, 284-288.
- Davraz M., Ceylan H., Topçu İ. B., & Uygunoğlu T. (2018). Pozzolanic effect of andesite waste powder on mechanical properties of high strength concrete. Construction and Building Materials, 165, 494-503.
- Ezzat M. Performance of dolomitic cementitious mortars as a repairing material for normal concrete in Egypt. European Materials Research Society, 34.
- Glinicki M. A., Jóźwiak-Niedźwiedzka D., Gibas K., & Dąbrowski M. (2016). Influence of blended cements with calcareous fly ash on chloride ion migration and carbonation resistance of concrete for durable structures. Materials, 9(1), 18.
- Smarzewski P., & Barnat-Hunek D. (2018). Property assessment of hybrid fiber-reinforced ultra-high-performance concrete. International Journal of Civil Engineering, 16, 593-606.
- Bodnárová L., Ťažký M., Ťažká L., Hela R., Pikna O., & Sitek L. (2020). Abrasive wear resistance of concrete in connection with the use of crushed and mined aggregate, active and non-active mineral additives, and the use of fibers in concrete. Sustainability, 12(23), 9920.
- Góra J., & Piasta W. (2020). Impact of mechanical resistance of aggregate on properties of concrete. Case Studies in Construction Materials, 13, e00438.
- Lagerblad B., Gram H. E., & Westerholm M. (2014). Evaluation of the quality of fine materials and filler from crushed rocks in concrete production. Construction and Building Materials, 67, 121-126.
- Meziani M., Amiri O., Leklou N., & Chelouah N. (2019). Transport properties study of supplementary cementitious materials: case of tuff, limestone filler and granodiorite. Journal of Adhesion Science and Technology, 33(3), 286-300.
- ASTM C 150. Standard Specification for Portland cement. American society for testing and materials, West Conshohocken. 2007, PA (USA).
- ASTM C 33-03. Standard Specification for Concrete Aggregates. American society for testing and materials, West Conshohocken. 2003, PA (USA).
- ASTM C494. Standard specification for chemical admixtures for concrete. West Conshohocken, PA, USA.
- Elsayd, A. A., & Fathy, I. N. (2019). Experimental Study of fire effects on compressive strength of normal-strength concrete supported with nanomaterials additives. IOSR J. Mech. Civ. Eng, 16(1), 28-37.
- Whitney D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187.
- American Concrete Institute. Committee 211. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete:(ACI 211.1-91). American Concrete Institute.
- ASTM C143. Standard test method for slump of hydraulic cement concrete; ASTM: West Conshohocken, PA, USA, 2008.
- ASTM C 187. Standard Test Method for Normal Consistency of Hydraulic Cement, Annual Book of ASTM Standards, Pennsylvania, USA, 1998.
- ASTM C 191. Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle, Annual Book of ASTM Standards, Pennsylvania, USA, 2004.
- Ying P. J., Liu F. S., Ren S. X., & Dong G. G. (2012). The research on the effect of granite powder on concrete performance. Applied Mechanics and Materials (Vol. 204, pp. 3760-3764). Trans Tech Publications Ltd.
- Prokopski G., Marchuk V., & Huts A. (2020). The effect of using granite dust as a component of concrete mixture. Case Studies in Construction Materials, 13, e00349.
- Vijayalakshmi M., & Sekar A. S. S. (2013). Strength and durability properties of concrete made with granite industry waste. Construction and Building Materials, 46, 1-7.
- Vardhan K., Siddique R., & Goyal S. (2019). Strength, permeation and micro-structural characteristics of concrete incorporating waste marble. Constr. and Building Materials, 203, 45-55.
- Abd Elmoaty A. E. M. (2013). Mechanical properties and corrosion resistance of concrete modified with granite dust. Construction and Building Materials, 47, 743-752.
- Ghorbani S., Taji, I., De Brito J., Negahban M., Ghorbani S., Tavakkolizadeh M., & Davoodi A. (2019). Mechanical and durability behaviour of concrete with granite waste dust as partial cement replacement under adverse exposure conditions. Construction and Building Materials, 194, 143-152.
- Zhang H., Ji T., He B., & He L. (2019). Performance of ultra-high performance concrete (UHPC) with cement partially replaced by ground granite powder (GGP) under different curing conditions. Construction and Building Materials, 213, 469-482.
- Heikal M., El-Didamony H., Sokkary T. M., & Ahmed I. A. (2013). Behavior of composite cement pastes containing microsilica and fly ash at elevated temperature. Construction and Building materials, 38, 1180-1190.
- Haneefa K. M., Santhanam M., & Parida F. C. (2013). Review of concrete performance at elevated temperature and hot sodium exposure applications in nuclear industry. Nuclear Engineering and Design, 258, 76-88.
- Singh S., Nagar R., & Agrawal V. (2016). Performance of granite cutting waste concrete under adverse exposure conditions. Journal of Cleaner Production, 127, 172-182.
- Ghrieb, A., & Abadou, Y. (2022). Physical and mechanical properties of dune sand mortar reinforced with recycled pet fiber: an experimental study. Advances in Materials Science, 22(4), 41-56.
- El-Sayed A. A., Fathy I. N., Tayeh B. A., & Almeshal I. (2022). Using artificial neural networks for predicting mechanical and radiation shielding properties of different nano-concretes exposed to elevated temperature. Construction and Building Materials, 324, 126663.
- Allam M. E., Bakhoum E. S., Ezz H., & Garas G. L. (2016). Influence of using granite waste on the mechanical properties of green concrete. ARPN Journal of Engineering and Applied Sciences, 11(5), 2805-2811.
- Kim JJ., Foley EM., Taha MM. Nano-mechanical characterization of synthetic calcium–silicate– hydrate (C–S–H) with varying CaO/SiO2 mixture ratios. Cement and Concrete Composites. 2013; 36:65-70.
- Kavitha O. R., Shanthi V. M., Arulraj G. P., & Sivakumar P. (2015). Fresh, micro-and macrolevel studies of metakaolin blended self-compacting concrete. Applied Clay Science, 114, 370-374.