References
- Montross C.S., Wei T., Ye L., Clark G., Mai Y-W.: Laser shock processing and its effects on microstructure and properties of metal alloys: a review. International Journal of Fatigue 24 (2002), 1021-1036.
- Boustie M., Berthe L., De Resseguier T., Arrigoni M.: Laser Shock Waves: Fundamentals and Applications. Proceedings of the 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications (2008), 1–6.
- Peyre P.: Laser Shock Processing on Metal. Metals 7 (2017), 409.
- John M., Kalvala P.R., Misra M., Menezes P.L.: Peening Techniques for Surface Modification: Processes, Properties, and Applications. Materials 14 (2021), 3841.
- Cuenca E., Ducousso M., Rondepierre A., Videau L., Cuvillier N., Berthe L., Coulouvrat F. Propagation of laser-generated shock waves in metals: 3D axisymmetric simulations compared to experiments. Journal of Applied Physics. 128 (2020), 244903.
- Sokol D.W., Clauer A.H., Dulaney J.L., Lahrman D.W.: Applications of laser peening to titanium alloys. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications. Systems and Technologies, Technical Digest (CD) Optica Publishing Group (2005)
- Zhang C., Dong Y., Ye C.: Recent Developments and Novel Applications of Laser Shock Peening: A Review. Advanced Engineering Materials 23 (2021), 2001216.
- Ouyang P., Luo X., Dong Z., Zhang S.: Numerical Prediction of the Effect of Laser Shock Peening on Residual Stress and Fatigue Life of Ti-6Al-4V Titanium Alloy. Materials 15 (2022), 5503.
- Ranjith Kumar G., Rajyalakshmi G., Swaroop S.: A critical appraisal of laser peening and its impact on hydrogen embrittlement of titanium alloys. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 223 (2019), 2371-2398.
- Shen X., Shukla P., Yao F., Nath S., An Z., Lawrence J.: Laser Shock Peening of Orthopaedic Ti-6Al-7Nb: Evaluation of Topography, Wetting Characteristics, Microstructure and Residual Stress. International Journal of Peening Science & Technology 1 (2019), 137-154.
- Jiao Y., He W., Shen X.: Enhanced high cycle fatigue resistance of Ti-17 titanium alloy after multiple laser peening without coating. International Journal of Advanced Manufacturing Technology 104 (2019), 1333–1343.
- Huang S., Zhu Y., Guo W., Peng P., Diao X.: Effects of Laser Shock Processing on Impact Toughness of Ti-17 Titanium Alloy. High Temperature Materials and Processes 37 (2018), 325-332.
- Wu J., Lin X., Qiao H., Zhao J., Ding W., Zhu R.: Microstructural Evolution and Surface Mechanical Properties of the Titanium Alloy Ti-13Nb-13Zr Subjected to Laser Shock Processing. Materials 16 (2023), 238.
- Ocaña J., Porro A., Morales M., Iordachescu D., Díaz M., Ruiz de Lara L., Correa C., Gil-Santos A.: Laser Shock Processing: an emerging technique for the enhancement of surface properties and fatigue life of high-strength metal alloys J.L. International Journal of Microstructure and Materials Properties 8 (2013), 38-52.
- Maawad E., Sano Y., Wagner L., Brokmeier H.-G., Genzel Ch.: Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys. Materials Science and Engineering: A 536 (2012) 82-91.
- Shu S., Huang X., Cheng Z., Shen Y., He Z., Liu W.: Understanding the Relations between Surface Stress State and Microstructure Feature for Enhancing the Fatigue Performance of TC6 Titanium Alloy. Coatings 11 (2021), 1261.
- Kanjer A., Lavisse L., Optasanu V., Berger P., Gorny C., Peyre P., Herbst F., Heintz O., Geoffroy N., Montesin T., Marco de Lucas M.C.: Effect of laser shock peening on the high temperature oxidation resistance of titanium. Surface and Coatings Technology 326 (2017), 146-155.
- Fan Y., Wang Y., Vukelic S., Yao Y.L.: Wave-solid interactions processes in laser-shock-induced deformation. Journal of Applied Physics 98 (2005), 104904.
- Kovalyuk B.P., Nikiforov Y.N., Nischenko M.M.: The phase conversion in stainless steel under LSW processing. Reviews on Advanced Materials Science 8 (2004), 34-40.
- Majkowska-Marzec B., Sypniewska J.: Microstructure and mechanical properties of laser surface-treated ti13nb13zr alloy with MWCNTs coatings. Advances in Materials Science 21 (2021), 5-18.
- Trzepieciński T., Szpunar M.: (2021). Multivariate modelling of effectiveness of lubrication of Ti-6Al-4V titanium alloy sheet using vegetable oil-based lubricants. Advances in Materials Science 21 (2021), 26-39.
- Kosturek R., Grzelak K., Torzewski J., Wachowski M., Śnieżek L.: Microstructure and mechanical properties of Sc-modified AA2519-T62 laser beam welded butt joints. Advances in Materials Science 22 (2022), 57-69.
- Kiani A., Radmanesh M. High-Energy Nanosecond Laser Pulses for Synthesis of Better Bone Implants. High Energy and Short Pulse Lasers. Ed. R. Viskup, Rijeka, Croatia, InTechOpen (2016).
- Mizutani M., Honda R., Yuda A., Komotori J., Ohmori H.: Effects of Nanosecond Laser Fabrication on Bioactivity of Pure Titanium. Procedia CIRP 5 (2013), 242-246.
- Seo B.Y., Son K., Son Y.-T., Dahal R.H., Kim S., Kim J., Hwang J., Kwon S.-M., Lee J.-M., Lee K.-B.: Influence of Dental Titanium Implants with Different Surface Treatments Using Femtosecond and Nanosecond Lasers on Biofilm Formation. Journal of Functional Biomaterials 14 (2023), 297.
- Lont A., Górka J., Janicki D., Matus K.: The laser alloying process of ductile cast iron surface with titanium powder in nitrogen atmosphere. Coatings 12 (2022), 227.
- Lisiecki A.: Study of optical properties of surface layers produced by laser surface melting and laser surface nitriding of titanium alloy. Materials 12 (2019), 3112.