References
- Wang W.C., Wang H.Y., Tsai H.C.: Study on engineering properties of alkali-activated ladle furnace slag geopolymer. Construction and Building Materials 123 (2016) 800–805.
- Gonçalves M., Vilarinho I.S., Capela M., Caetano A., Novais R.M., Labrincha J.A., Seabra M.P.: Waste-Based One-Part Alkali Activated Materials. Materials 14 (2021), 2911.
- Omur T., Kabay N., Miyan N., Ozkan H., Ozkan C.: The effect of alkaline activators and sand ratio on the physico-mechanical properties of blast furnace slag based mortars. Journal of Building Engineering 58 (2022) 104998.
- Davidovits J.: Geopolymer: chemistry and application. J. Davidovits [ed.], Institut Géopolymère, Saint-Quentin, France, 2008.
- Reddy M.S., Dinakar P., Rao B.H.: Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete. Journal of Building Engineering 20 (2018) 712–722.
- Duxson P., Fernandez-Jimenez A., Provis J.L., Lukey G.C., Palomo A., Deventer J.: Geopolymer technology: the current state of the art. Journal of Materials Science 42 (9) (2007) 2917–2933.
- Oderji S.Y., Chen B., Ahmad M.R., Shah S.F.A.: Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators. Journal of Cleaner Production 225 (2019) 1–10.
- An Q., Pan H., Zhao Q., Wang D.: Strength development and microstructure of sustainable geopolymers made from alkali-activated ground granulated blast-furnace slag, calcium carbide residue, and red mud. Construction and Building Materials 356 (2022) 129279.
- Garcia-Lodeiro I., Palomo A., Fernández-Jiménez A., Macphee D.E.: Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cement and Concrete Research 41 (2011) 923–931.
- Davidovits J., Geopolymers inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry 37 (1991) 1633–1656.
- Abdollahnejad Z., Pacheco-Torgal F., De Aguiar J.B.: Eco-concrete: One-part geopolymer mixes. Proce. TRF Senior Research Scholars Progress II, Khon Kaen, Thailand, 2013. pp. 1-7
- Askarian M., Tao Z., Adam G., Samali B.: Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete. Construction and Building Materials 186 (2018) 330–337.
- Askarian M., Tao Z., Samali B., Adam G., Shuaibu R.: Mix composition and characterisation of one-part geopolymers with different activators. Construction and Building Materials 225 (2019) 526–537.
- Nematollahi B., Sanjayan J., Qiu J., Yang E.: Micromechanics-based investigation of a sustainable ambient temperature cured one-part strain hardening geopolymer composite. Construction and Building Materials 131 (2017) 552–563.
- Sturm P., Gluth G.J.G., Brouwers H.J.H., Kühne H.C.: Synthesizing one-part geopolymers from rice husk ash. Construction and Building Materials 124 (2016) 961–966.
- Karam R., Paris M., Deneele D., Wattez T., Cyr M., Bulteel D.: Effect of sediment incorporation on the reactivity of alkali-activated GGBFS systems. Materials and Structure (2021) 54 118.
- Marvila M.T, De Azevedo A.R.G, Oliveira L.B, Xavier G.D.C, Fontes Vieira C.M. : Mechanical, physical and durability properties of activated alkali cement based on blast furnace slag as a function of %Na2O. Case Studies in Construction Materials 15 (2021) e00723.
- 18. Provis J.L., Bernal S.A.: Geopolymers and Related Alkali-Activated Materials. Annual Review of Materials Research 44 (2014) 299–327.
- Provis J.L., Van Deventer J.S.J., Alkali Activated Materials. State-of-the-Art-Report, J.L. Provis and J.S.J. Van Deventer [eds.], New York London, 2014.
- Guo W., Zhao Q., Sun Y., Xue C., Bai Y., Shi Y.: Effects of various curing methods on the compressive strength and microstructure of blast furnace slag-fly ash-based cementitious material activated by alkaline solid wastes. Construction and Building Materials 357 (2022) 129397.
- Suwan T., Fan M.: Effect of manufacturing process on the mechanisms and mechanical properties of fly ash-based geopolymer in ambient curing temperature. Materials and Manufacturing Processes 32 (2017) 461–467.
- Peng M.X., Wang Z.H., Xiao Q.G., Song F., Xie W., Yu L.C., Huang H.W., Yi S.J.: Effects of alkali on one-part alkali-activated cement synthesized by calcining bentonite with dolomite and Na2CO3. Applied Clay Science 139 (2017) 64–71.
- Van Deventer J.S.J., Feng D., Duxson P.: Dry mix cement composition, methods and system involving same. Patent N° 7,691,198 B2, USA, 2010.
- Li X., Wang Z., Jiao Z.: Influence of curing on the strength development of calcium-containing geopolymer mortar. Materials 6 (2013) 5069–5076.
- O’Connor S.J., MacKenzie K.J.D.: Synthesis, characterization and thermal behavior of lithium aluminosilicate inorganic polymers. Journal of Materials Science 45 (2010) 3707–3713.
- Jun Y., Han S.H., Kim J.H.: Early-age strength of CO2 cured alkali-activated blast furnace slag pastes. Construction and Building Materials 288 (2021) 123075.
- Manojsuburam E., Sakthivel E., Jayanthimani E.: A study on the mechanical properties of alkali activated ground granulated blast furnace slag and fly ash concrete, Materials Today: Proceedings 62 (2022) 1761–1764.
- Marsh A.T.M., Yue Z., Dhandapani Y., Button K., Adu-Amankwah S., Bernal S.A.: Influence of limestone addition on sodium sulphate activated blast furnace slag cements. Construction and Building Materials 360 (2022) 129527.
- Bilici S., Kabay N., Miyan N., Omur T., Ozkan H.: Effect of washing aggregate sludge waste on the properties of alkali-activated blast furnace slag. Journal of Building Engineering 63 (2023) 105527.
- Yon MS., Karatas M.: Evaluation of the mechanical properties and durability of self-compacting alkali-activated mortar made from boron waste and granulated blast furnace slag. Journal of Building Engineering 61 (2022) 105263.
- Duan W., Zhuge Y, Chow W.K.C, Keegan A., Liu Y., Siddique R.: Mechanical performance and phase analysis of an eco-friendly alkali-activated binder made with sludge waste and blast-furnace slag. Journal of Cleaner Production 374 (2022) 134024.
- Wang Q., Sun S., Yao G., Wang Z., Lyu X.: Preparation and characterization of an alkali-activated cementitious material with blast-furnace slag, soda sludge, and industrial gypsum. Construction and Building Materials 340 (2022) 127735.
- Adediran A., Yliniemi J., Lemougna P.N., Perumal P., Illikainen M.: Recycling high volume Fe-rich fayalite slag in blended alkali-activated materials: Effect of ladle and blast furnace slags on the fresh and hardened state properties. Journal of Building Engineering 63 (2023) 105436.
- Huang Z., Wang Q., Lu J.: The effects of cations and concentration on reaction mechanism of alkali-activated blast furnace ferronickel slag. Composites Part B 236 (2022) 109825.
- Sadeghian G., Behfarnia K., Teymouri M.: Drying shrinkage of one-part alkali-activated slag concrete. Journal of Building Engineering 51 (2022) 104263.
- Huang D., Yuan Q., Chen P., Tian X., Peng H.: Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag. Journal of Building Engineering 62 (2022) 105341.
- Ou Z., Feng R., Li F., Liu G., Li N.: Development of drying shrinkage model for alkali-activated slag concrete. Construction and Building Materials 323 (2022) 126556.
- NF EN-196-3: Méthodes d’essai des ciments - Partie 3: Détermination du temps de prise et de la stabilité, septembre 2017.
- NF EN1015-11: Méthodes d’essai des mortiers pour maçonnerie - Partie 11: Détermination de la résistance en flexion et en compression du mortier durci. Novembre 2019.
- NF P18-459 : Béton - Essai pour béton durci - Essai de porosité et de masse volumique.
- Oualit M., Irekti A., Sarri A. Influence des conditions de durcissement et le taux d’alcalins sur les performances mécaniques des matériaux alcali-activés à base du laitier de haut fourneau. Matériaux & Techniques 110 (2022) 202.
- Gijbelsa K., Pontikesb Y., Samync P., Schreursa S., Schroeyersa W.: Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Cement and Concrete Research 132 (2020) 106054.
- Shi C., Roy D., Krivenko P.: Alkali-Activated Cements and Concretes. C. Shi, D. Roy, P. Krinvenko [ed.]. CRC Press, UK. 2006.
- Fernández-Jiménez A., Palomo J.G., Puertas F.: Alkali-activated slag mortars: Mechanical strength behaviour. Cement and Concrete Research 29(8) (1999), 1313–1321
- Palomo A., Maltseva O., Garcia-Lodeiro I., Fernández-Jiménez A.: Portland versus alkaline cement: Continuity or clean break: A key decision for global sustainability. Frontiers in Chemistry (2021) 9 705475.