Have a personal or library account? Click to login
Numerical Failure Analysis of Laminated Beams Using a Refined Finite Element Model Cover

Numerical Failure Analysis of Laminated Beams Using a Refined Finite Element Model

Open Access
|Mar 2023

References

  1. Tsai, S.W., Wu, E.M., A general theory of strength for anisotropic materials. Journal of Composite Materials, 5(1) (1971) 58-80. https://doi.org/10.1177/00219983710050010610.1177/002199837100500106
  2. Hill, R., A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033) (1948) 281-297. https://doi.org/10.1098/rspa.1948.004510.1098/rspa.1948.0045
  3. Hoffman, O., The brittle strength of orthotropic materials. Journal of Composite Materials, 1(2) (1967) 200-206. https://doi.org/10.1177/00219983670010021010.1177/002199836700100210
  4. Jones, R.M., Mechanics of composite materials, 2018 CRC Press.10.1201/9781498711067
  5. Yeh, H.-L., Quadric surfaces criterion for composite materials. Journal of Reinforced Plastics and Composites, 22(6) (2003) 517-532. https://doi.org/10.1106/07316840302327410.1106/073168403023274
  6. Yeh, H.-L., Yeh, H.-Y., The modified quadric surfaces criterion for composite materials. Journal of Reinforced Plastics and Composites, 21(3) (2002) 279-289. https://doi.org/10.1177/073168440202100311010.1177/0731684402021003110
  7. Hashin, Z., Fatigue failure criteria for unidirectional fiber composites. University of Pennsylvania, Philadelphia. 1981.10.1115/1.3157744
  8. Norris, C., Strength of orthotropic materials subjected to combined stresses, United States Department Of Agriculture Forest Service. 1962.
  9. Hart-Smith, L., Predictions of the original and truncated maximum-strain failure models for certain fibrous composite laminates. Composites Science and Technology, 58(7) (1998) 1151-1178. https://doi.org/10.1016/S0266-3538(97)00192-910.1016/S0266-3538(97)00192-9
  10. Sun, C.-T., Comparative evaluation of failure analysis methods for composite laminates, 1996.
  11. Davila, C.G., Camanho, P.P., Rose, C.A., Failure criteria for frp laminates. Journal of Composite Materials, 39(4) (2005) 323-345. https://doi.org/10.1177/002199830504645210.1177/0021998305046452
  12. Puck, A., Kopp, J., Knops, M., Guidelines for the determination of the parameters in puck’s action plane strength criterion. Composites Science and Technology, 62(3) (2002) 371-378. https://doi.org/10.1016/S0266-3538(01)00202-010.1016/S0266-3538(01)00202-0
  13. Catalanotti, G., Camanho, P., Marques, A., Three-dimensional failure criteria for fiber-reinforced laminates. Composite Structures, 95 (2013) 63-79. https://doi.org/10.1016/j.compstruct.2012.07.01610.1016/j.compstruct.2012.07.016
  14. Gutkin, R., Pinho, S., Review on failure of laminated composites: experimental perspective and modelling. 2016.
  15. Hill, R., The mathematical theory of plasticity. Vol. 11. 1998: Oxford University Press.
  16. Berthelot, J.-M., Composite materials: mechanical behavior and structural analysis. Mechanical Engineering Series. 1999: Springer.10.1007/978-1-4612-0527-2
  17. Azzi, V., Tsai, S.W., Anisotropic strength of composites. Experimental Mechanics, 5(9) (1965) 283-288.10.1007/BF02326292
  18. Kim, Y., Davalos, J.F., Barbero, E.J., Progressive failure analysis of laminated composite beams. Journal of Composite Materials, 30(5) (1996) 536-560. https://doi.org/10.1177/00219983960300050110.1177/002199839603000501
  19. Lezgy Nazargah, M., Meshkani, Z., An efficient partial mixed finite element model for static and free vibration analyses of fgm plates rested on two-parameter elastic foundations. Structural Engineering And Mechanics, An International Journal, 66(5) (2018.) 665-676.
  20. Lezgy Nazargah, M., A high-performance parametrized mixed finite element model for bending and vibration analyses of thick plates. Acta Mechanica, 227(12) (2016) 3429-3450. https://doi.org/10.1007/s00707-016-1676-410.1007/s00707-016-1676-4
  21. Lezgy Nazargah, M., Salahshuran, S., A new mixed-field theory for bending and vibration analysis of multi-layered composite plate. Archives Of Civil And Mechanical Engineering, 18(3) (2018) 818-832. https://doi.org/10.1016/j.acme.2017.12.00610.1016/j.acme.2017.12.006
  22. Irhirane, E.H., Echaabi, J., Aboussaleh, M., Hattabi, M., Trochu, F., Matrix and fibre stiffness degradation of a quasi-isotrope graphite epoxy laminate under flexural bending test. Journal of Reinforced Plastics and Composites, 28(2) (2009) 201-223. https://doi.org/10.1177/073168440708421310.1177/0731684407084213
  23. Moncada, A.M., Chattopadhyay, A., Bednarcyk, B.A., Arnold, S.M., Micromechanics-based progressive failure analysis of composite laminates using different constituent failure theories. Journal of Reinforced Plastics and Composites, 31(21) (2012) 1467-1487. https://doi.org/10.1177/073168441245633010.1177/0731684412456330
  24. Hasan, Z., Muliana, A., Failure and deformation analyses of smart laminated composites. Mechanics of Composite Materials, 48(4) (2012) 391-404. https://doi.org/10.1007/s11029-012-9285-310.1007/s11029-012-9285-3
  25. Daniel, I.M., Constitutive behavior and failure criteria for composites under static and dynamic loading. Meccanica, 50(2) (2015) 429-442. https://doi.org/10.1007/s11012-013-9829-110.1007/s11012-013-9829-1
  26. Lezgy-Nazargah, M., Assessment of refined high-order global–local theory for progressive failure analysis of laminated composite beams. Acta Mechanica, 228(5) (2017) 1923-1940. https://doi.org/10.1007/s00707-017-1807-610.1007/s00707-017-1807-6
  27. Ounis, H., Tati, A., Benchabane, A., Thermal buckling behavior of laminated composite plates: a finite-element study. Frontiers of Mechanical Engineering, 9(1) (2014) 41-49. https://doi.org/10.1007/s11465-014-0284-z10.1007/s11465-014-0284-z
  28. Khechai, A., Tati, A., Guettala, A., Finite element analysis of stress concentrations and failure criteria in composite plates with circular holes. Frontiers of Mechanical Engineering, 9(3) (2014) 281-294. https://doi.org/10.1007/s11465-014-0307-910.1007/s11465-014-0307-9
DOI: https://doi.org/10.2478/adms-2023-0003 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 32 - 57
Published on: Mar 11, 2023
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Maroua Layachi, Abdelhak Khechai, Abderrahmane Ghrieb, Safa Layachi, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.