Have a personal or library account? Click to login
Time-Periodic Thermal Boundary Effects on Porous Media Saturated with Nanofluids: CGLE Model for Oscillatory Mode Cover

Time-Periodic Thermal Boundary Effects on Porous Media Saturated with Nanofluids: CGLE Model for Oscillatory Mode

Open Access
|Dec 2022

References

  1. 1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. in: D.A. Singer, H.P. Wang(Eds.) Development and applications of Non-Newtonian Flows, ASME Fluids Engineering Division. 66 (1995) 99-105.
  2. 2. H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles, Netsu Bussei. 7 (1993) 227–233.10.2963/jjtp.7.227
  3. 3. H.S. Chen, Y. Ding, A. Lapkin, Rheological behaviour of nanofluids containing tube/rod-like nanoparticles, Power Technology. 194 (2009) 132–141.10.1016/j.powtec.2009.03.038
  4. 4. J.A. Eastman, SUS. Choi, W. Yu, L.J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Applied Physics Letters 78 (2001) 718-720.10.1063/1.1341218
  5. 5. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids. ASME Journal of Heat Transfer. 125 (2003) 567–574.10.1115/1.1571080
  6. 6. J. Buongiorno, W. Hu, Nanofluid coolant for advanced nuclear power plants, In: Proceedings of ICAPP’05, Seoul. 5705 (2009) 15–19.
  7. 7. I.S. Oyelakin, P. Lalramneihmawii, S. Mondal, S.K. Nandy, P. Sibanda, Thermophysicalanalysis of three-dimensional magnetohydrodynamic flow of a tangent hyperbolic nanofluid, Engineering Reports. 2 (2020) 12144.10.1002/eng2.12144
  8. 8. J.A. Eastman, SUS. Choi, W. Yu, Thompson LJ. Thermal Transport in Nanofluids, Annual Rev. Mater. Research. 34 (2004) 219-246.10.1146/annurev.matsci.34.052803.090621
  9. 9. U. Rea, T. McKrell, L. Hu, J. Buongiorno, Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids, International Journal of Heat and Mass Transfer. 52 (2009) 2042–2048.10.1016/j.ijheatmasstransfer.2008.10.025
  10. 10. J. Buongiorno, Convective transport in nanofluids, ASME Journal of Heat Transfer. 128 (2006) 240–250.10.1115/1.2150834
  11. 11. DY. Tzou, Thermal instability of nanofluids in natural convection, International Journal of Heat and Mass Transfer. 51 (2008) 2967–2979.10.1016/j.ijheatmasstransfer.2007.09.014
  12. 12. D.Y. Tzou, Instability of nanofluids in natural convection, ASME Journal of Heat Transfer. 130 (2008) 072401.10.1115/1.2908427
  13. 13. D.A. Nield, A.V. Kuznetsov, Thermal instability in a porous medium layer saturated by nonofluid, International Journal of Heat and Mass Transfer. 52 (2009) 5796–5801.10.1016/j.ijheatmasstransfer.2009.07.023
  14. 14. A.V. Kuznetsov, D.A. Nield, Effect of local Thermal non-equilibrium on the Onset of convection in porous medium layer saturated by a Nanofluid, Transport in Porous Media. 83 (2010) 425–436.10.1007/s11242-009-9452-8
  15. 15. A.V. Kuznetsov, D.A. Nield, Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman Model, Transport in Porous Media. 81 (2010) 409–422.10.1007/s11242-009-9413-2
  16. 16. B.S. Bhadauria, S.Agarwal, Natural Convection in a Nanofluid Saturated Rotating Porous Layer A Nonlinear Study, Transport in Porous Media. 87 (2011) 585-602.10.1007/s11242-010-9702-9
  17. 17. S. Agarwal, B.S. Bhadauria, P.G. Siddheshwar, Thermal instability of a nanofluid saturating a rotating anisotropic porous medium, Special Topics Reviews in Porous Media: An Int J. 2 (2011) 53-64.10.1615/SpecialTopicsRevPorousMedia.v2.i1.60
  18. 18. S. Agarwal, Natural convection in a nanofluid-saturated rotating porous layer: A more realistic approach, Transport in Porous Media. 104 (2011) 581-592.10.1007/s11242-014-0351-2
  19. 19. S. Rana, S. Agarwal, Convection in a binary nanofluid saturated rotating porous layer, Journal of Nanofluids. 4 (2015) 59-65.10.1166/jon.2015.1123
  20. 20. S. Agarwal, S. Rana, Nonlinear convective analysis of a rotating Oldroyd-B nanofluid layer under thermal non-equilibrium utilizing Al 2 O 3-EG colloidal suspension. The European Physical Journal. 131 (2016) 01–14.10.1140/epjp/i2016-16101-0
  21. 21. J.C. Umavathi, M.A. Sheremet, Chemical reaction influence on nanofluid flow in a porous layer: Stability analysis, International Communications in Heat and Mass Transfer 138, (2022) 106353.10.1016/j.icheatmasstransfer.2022.106353
  22. 22. P. Kiran, Gravitational modulation effect on double-diffusive oscillatory convection in a viscoelastic fluid layer, Jourmal of Nanofluids. 11 (2022) 263-275.10.1166/jon.2022.1827
  23. 23. S.H. Manjula, P. Kiran, Thermo-rheological effect on weak nonlinear Rayleigh-Benard convection under rotation speed modulation, Book: Boundary Layer Flows. (2022) 01-20.10.5772/intechopen.105097
  24. 24. W. Ibrahim, M. Negera, Melting and viscous dissipation effect on upper-convected Maxwell and Williamson nanofluid, Engineering Reports. 2 (2020) 12159.10.1002/eng2.12159
  25. 25. A.O. Ajibade, P.O. Ojeagbase, Steady natural convection heat and mass transfer flowthrough a vertical porous channel with variable viscosity and thermal conductivity, Engineering Reports. 2 (2020) 12268.10.1002/eng2.12268
  26. 26. X. Lü et al. Stability and optimal control strategies for a novel epidemic model of COVID-19, Nonlinear Dynamics, 106 (2021) 1491–1507.10.1007/s11071-021-06524-x814840634054221
  27. 27. M.Z. Yin, Q.W. Zhu, X. L¨, Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model, Nonlinear Dynamics. 106 (2021) 1347–1358.10.1007/s11071-021-06587-w821197734177117
  28. 28. Y.H. Yin et al. B¨cklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dynamics. 108 (2022) 4181–4194.10.1007/s11071-021-06531-y
  29. 29. Y.W. Zhao, J.W. Xia & X. L¨, The variable separation solution, fractal and chaos in an extended coupled (2+1)-dimensional Burgers system. Nonlinear Dynamics. 108 (2022) 4195–4205.10.1007/s11071-021-07100-z
  30. 30. B. Liu, et al. Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential, Modern Physics Letters B. 36(15) (2022) 2250057.10.1142/S0217984922500579
  31. 31. G. Venezian, Effect of modulation on the onset of thermal convection, Journal of Fluid Mechanics. 35 (1969) 243-254.10.1017/S0022112069001091
  32. 32. P.M. Gresho, R.L. Sani, The Effects of Gravity Modulation on the Stability of a Heated Fluid Layer, Journal of Fluid Mechanics 40 (1970) 783–806.10.1017/S0022112070000447
  33. 33. M.S. Malashetty, D. Basavaraj, Effect of thermal/gravity modulation on the onset of convection of Raleygh–Bénard convection in a couple stress fluid, International Journal of Transport Phenomenon. 7 (2005) 31–44.10.1016/j.ijthermalsci.2004.09.004
  34. 34. Y. Shu, B.Q. Li, B.R. Ramaprian, Convection in modulated thermal gradients and gravity: experimental messurements and numerical simulations, International Journal of Mass and Heat Transfer. 48 (2005) 145–160.10.1016/j.ijheatmasstransfer.2004.08.010
  35. 35. J.L. Rogers, W. Pesch, O. Brausch, M.F. Schatz, Complex ordered patterns in shaken convection, Physical Review E. 71 (2005) 066214.10.1103/PhysRevE.71.066214
  36. 36. T. Boulal, S. Aniss, M. Belhaq, Effect quasiperiodic gravitational modulation on the stability of a heated fluid layer, Physycal Review E. 76 (2007) 056320.10.1103/PhysRevE.76.056320
  37. 37. J.C. Umavathi, Effect of Thermal Modulation on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid, Transport in Porous Media. 98 (2013) 59-79.10.1007/s11242-013-0133-2
  38. 38. B.S. Bhadauria, P. Kiran, Nonlinear thermal Darcy convection in a nanofluid saturated porous medium under gravity modulation, Advanced Science Letters. 20 (2014) 903-910.10.1166/asl.2014.5466
  39. 39. B.S. Bhadauria, P. Kiran, M. Belhaq, Nonlinear thermal convection in a layer of nanofluid under g-jitter and internal heating effects, MATEC Web of Conferences. 16 (2014) 09003.10.1051/matecconf/20141609003
  40. 40. P. Kiran, B.S. Bhadauria, V. Kumar, Thermal Convection in a Nanofluid Saturated Porous Medium with Internal Heating and Gravity Modulation, Journal of Nanofluids. 5(3) (2016) 321-327.10.1166/jon.2016.1220
  41. 41. P. Kiran, Nonlinear thermal convection in a viscoelastic nanofluid saturated porous medium under gravity modulation, Ain Shams Engineering Journal. 7(2) (2016) 639-651.10.1016/j.asej.2015.06.005
  42. 42. P. Kiran, Y. Narasimhulu, Centrifugally driven convection in a nanofluid saturated rotating porous medium with modulation, Journal of Nanofluids. 6 (2017) 01-11.10.1166/jon.2017.1333
  43. 43. P. Kiran, Y. Narasimhulu, Internal heating and thermal modulation effects on chaotic convection in a porous medium, Journal of Nanofluids. 7 (2018) 544-555.10.1166/jon.2018.1462
  44. 44. P. Kiran, S.H. Manjula, Internal heat modulation on Darcy convection in a porous media saturated by nanofluid, Journal of Nanofluids. (2022) In press.10.1166/jon.2023.1959
  45. 45. B.S. Bhadauria, P. Kiran, Weakly nonlinear oscillatory convection in a viscoelastic fluid saturating porous medium under temperature modulation, International Journal of Heat and Mass Transfer. 77 (2014) 843–851.10.1016/j.ijheatmasstransfer.2014.05.037
  46. 46. B.S. Bhadauria, P. Kiran, Heat and mass transfer for oscillatory convection in a binary viscoelastic fluid layer subjected to temperature modulation at the boundaries, International Communications in Heat Mass Transfer. 58 (2014) 166–175.10.1016/j.icheatmasstransfer.2014.08.031
  47. 47. P. Kiran, B.S. Bhadauria, R. Roslan, The effect of throughflow on weakly nonlinear convection in a viscoelastic saturated porous medium, Journal of Nanofluids. 9 (2020) 36-46.10.1166/jon.2020.1724
  48. 48. B.S. Bhadauria, S. Agarwal, A. Kumar, Nonlinear Two-Dimensional Convection in a Nanofluid Saturated Porous Medium, Transport in Porous Media. 90 (2011) 605–625.10.1007/s11242-011-9806-x
  49. 49. B.S. Bhadauria, P. Kiran, Weak nonlinear oscillatory convection in a viscoelastic fluid layer under gravity modulation, International Journal of Non-linear Mechanics. 65 (2014) 133–140.10.1016/j.ijnonlinmec.2014.05.002
  50. 50. B.S. Bhadauria, P. Kiran, Weak nonlinear oscillatory convection in a viscoelastic fluid saturated porous medium under gravity modulation, Transport in Porous Media. 104 (2014) 451-467.10.1007/s11242-014-0343-2
  51. 51. B.S. Bhadauria, P. Kiran, Chaotic and oscillatory magneto-convection in a binary viscoelastic fluid under G-jitter, International Journal of Heat and Mass Transfer. 84 (2014) 610-624.10.1016/j.ijheatmasstransfer.2014.12.032
  52. 52. S.H Davis, The stability of time periodic flows, Annual Review of Fluid Mechanics. 8 (1976) 57–74.10.1146/annurev.fl.08.010176.000421
  53. 53. S. Agarwal, B.S. Bhadauria, Convective heat transport by longitudinal rolls in dilute Nanoliquids, Journal of Nanofluids. 3 (2014) 380-390.10.1166/jon.2014.1110
  54. 54. B. Rajib, G.C. Layek, The onset of thermo convection in a horizontal viscoelastic fluid layer heated underneath, Thermal Energy and Power Engineering. 1 (2012) 01–9.10.11648/j.ijepe.20120101.11
DOI: https://doi.org/10.2478/adms-2022-0022 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 98 - 116
Published on: Dec 30, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Palle Kiran, Sivaraj H. Manjula, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.