Have a personal or library account? Click to login
Density and Water Absorption Coefficient of Sandcrete Blocks Produced with Waste Paper ash as Partial Replacement of Cement Cover

Density and Water Absorption Coefficient of Sandcrete Blocks Produced with Waste Paper ash as Partial Replacement of Cement

Open Access
|Dec 2022

References

  1. 1. N.E. Ekpenyong, G.P. Umoren, I.E. Udo, O.J. Yawo (2022): Assessment of Thermophysical and Mechanical Properties of Composite Panels Fabricated from Untreated and Treated Coconut Husk Particles for Structural Application, Brilliant Engineering, 2; 1-5, https://doi.org/10.36937/ben.2022.454710.36937/ben.2022.4547
  2. 2. B.M. Kejela (2020): Waste Paper Ash as partial replacement of cement in concrete, American Journal of Construction and Building Materials, 4(1); 8–13. https://doi.org/10.11648/j.ajcbm.2020401.1210.11648/j.ajcbm.20200401.12
  3. 3. U.W. Robert, S.E. Etuk, G.P. Umoren, O.E. Agbasi (2019): Assessment of thermal and mechanical properties of composite board produced from coconut (Cocos nucifera) husks, waste newspapers, and cassava starch, International Journal of Thermophysics, 40(9):1 - 12, https://doi.org/10.1007/s10765-019-2547-810.1007/s10765-019-2547-8
  4. 4. E.U. Nathaniel, U.W. Robert, M.E.Asuquo (2020): Evaluation of Properties of Composite Panels Fabricated from Waste Newspaper and Wood Dust for Structural Application, Journal of Energy Research and Reviews, 5(1): 8-15, https://doi.org/10.9734/JENRR/2020/v5i13013810.9734/jenrr/2020/v5i130138
  5. 5. U.W. Robert, S.E. Etuk, U.A. Iboh, G.P. Umoren, O.E. Agbasi, Z.T. Abdulrazzaq (2020): Thermal and mechanical properties of fabricated plaster of paris filled with groundnut seed coat and waste newspaper materials for structural application, Építôanyag-Journal of Silicate Based and Composite Materials, 72(2); 72 – 78,https://doi.org/10.14382/epĩtõanyag-jsbcm.2020.1210.14382/epitoanyag-jsbcm.2020.12
  6. 6. B.A. Solahuddin, F.M. Yahaya (2021): Effect of Shredded Waste Paper on Properties of Concrete, 4th National Conference on Wind & Earthquake Engineering, IOP Conf. Series: Earth and Environmental Science, 682; 012006, https://doi.org/10.1088/1755-1315/682/1/01200610.1088/1755-1315/682/1/012006
  7. 7. B. A. Solahuddin, F. M. Yahaya (2021): Inclusion of Waste Paper on Concrete Properties: A Review, Civil Engineering, 7; 94 – 113, https://dx.doi.org/10.28991/CEJ-SP2021-07-0710.28991/CEJ-SP2021-07-07
  8. 8. B.B. Mitikie, D.T. Waldtsadik (2022): Partial Replacement of Cement by Waste Paper Pulp Ash and Its Effect on Concrete Properties, Advances in Civil Engineering, 8880196, https://doi.org/10.1155/2022/888019610.1155/2022/8880196
  9. 9. S. Subanndi, F. Agustina, V. Vebrian, R. Azzahra (2020): Waste Paper Ash as Additives for High Strength Concrete Mix 45 MPa, Annales de Chimie Science des Matériaux, 44(2); 91 – 96, https://doi.org/10.18280/acsm.44020310.18280/acsm.440203
  10. 10. B. Meko, J. Ighalo (2021): Utilization of waste paper ash as supplementary cementitious material in C-25 concrete: Evaluation of fresh and hardened properties, Cogent Engineering, 8:1, 1938366, https://doi.org/10.1080/23311916.2021.193836610.1080/23311916.2021.1938366
  11. 11. J.P. Azar, M. Najarchi, B. Sanaati et al (2019): The experimental assessment of the effect of paper waste ash and silica fume on improvement of concrete behavior, KSCE Journal of Civil Engineering., 23; 4503 – 4515, https://doi.org/10.1007/s12205-019-0678-x10.1007/s12205-019-0678-x
  12. 12. U.W. Robert, S.E. Etuk, O.E. Agbasi, G.P. Umoren, S.S. Akpan, L.A. Nnanna (2021): Hydrothermally-calcined waste paper ash nanomaterial as an alternative to cement for clay soil modification for building purposes, Acta Polytechnica, 61(6); 749–761, https://doi.org/10.14311/AP.2021.61.074910.14311/AP.2021.61.0749
  13. 13. M. O’mara, How much paper is used in one day? Record Nations, March 26, 2021, www.recordnations.com
  14. 14. R.W.J. McKinney (1995): Technology of paper recycling, Blackie Academic and Professional, Chapman and Hall, New York, London, pp. 7 – 15
  15. 15. L. Simäo, D. Hotza, F. Raupp-Pereira, J.A. Labrincha, O.R.K. Montedo (2018): Wastes from pulp and paper mills – a review of generation and recycling alternatives, Cerāmica, 64 (371), https://doi.org/10.1590/0366-691310.1590/0366-69132018643712414
  16. 16. U.W. Robert, S.E. Etuk, J.B. Emah, O.E. Agbasi, U.A.Iboh (2022): Thermophysical and Mechanical Properties of Clay-Based Composites developed with Hydrothermally Calcined Waste Paper Ash Nanomaterial for Building Purposes, International Journal of Thermophysics, 43(5); 1 - 20, https://doi.org/10.1007/s10765-022-02995-110.1007/s10765-022-02995-1
  17. 17. A.E. Adeniran, A. Nubi, A. Adelopo (2017): Solid waste generation and characterisation in the University of Lagos for a sustainable waste management, Waste Management, 67;3 – 10,https://doi.org/10.1016/j.wasman.2017.05.00210.1016/j.wasman.2017.05.00228532622
  18. 18. U.W. Robert, S.E. Etuk, O.E. Agbasi, U.S. Okorie, A. Lashin (2021): Hygrothermal properties of sandcrete blocks produced with raw and hydrothermally-treated sawdust as partial substitution materials for sand, Journal of King Saud University – Engineering Sciences, https://doi.org/10.1016/j.jksues.2021.10.00510.1016/j.jksues.2021.10.005
  19. 19. U.W. Robert, S.E. Etuk, O.E. Agbasi, S.A. Ekong (2020): Properties of sandcrete block produced with coconut husk as partial replacement of sand, Journal of Building Materials and Structures, 7(1); 95 – 104, https://doi.org/10.5281/zenodo.399327410.34118/jbms.v7i1.710
  20. 20. G.L. Oyekan, O.M. Kamiyo (2011): A case study on the engineering properties of sandcrete blocks produced with rice husk ash blended cement, Journal of Engineering and Technology Research, 3(2); 88 – 98, https://doi.org/www.academicjournals.org/JETR
  21. 21. W. Khan, M. Fahim, S. Zaman, S.W. Khan, Y.I. Badrashi, F. Khan (2021): Use of rice husk ash as partial replacement of cement in sandcrete block, Advances in Science and Technology. Research Journal, 15(2); 101 – 107, https://doi.org/10.12913/22998624/13347010.12913/22998624/133470
  22. 22. M.I. Aho, J.T, Utsev (2008): Compressive strength of hollow sandcrete blocks made with rice husk ash as a partial replacement to cement, Nigerian Journal of Technology, 27(2)
  23. 23. T. Alkamu, I. Emmanuel, E.P. Datok, D.D. Jambol (2018): Guinea corn husk ash as partial replacement of cement in hollow sandcrete block production, International Journal of Modern Trends in Engineering and Research, 5(6); 13 – 19, https://doi.org/10.21884/ijmter.2018.5163.xljyk10.21884/IJMTER.2018.5163.XLJYK
  24. 24. H. Mahmoud, Z.A. Belel, C. Nwakaire (2012): Groundnut shell ash as a partial replacement of cement in sandcrete blocks production, International Journal of Development and Sustainability, 1(3); 1026 - 1032
  25. 25. IC. Christopher, O.I. Ndubuisi, N.D. Chimobi, O.V. Arinze, J.N. Ezema (2018): Partial replacement of cement with coconut shell ash in sandcrete block, Research Journal of Applied Sciences, Engineering and Technology, 15(6); 206–211, https://doi.org/10.19026/rjaset.15.585910.19026/rjaset.15.5859
  26. 26. U.W. Robert, S.E. Etuk, O.E. Agbasi, G.P. Umoren, N.J. Inyang (2021): Investigation of thermophysical and mechanical properties of board produced from coconut (Cocos nucifera) leaflet. Environmental Technology & Innovation, 24(1), 101869, https://doi.org/10.1016/j.eti.2021/10186910.1016/j.eti.2021.101869
  27. 27. M. Bediako, E.O. Amankwah (2015): Analysis of chemical composition of cement in Ghana: A key to understand the behaviour of cement, Advances in Materials Science and Engineering, 349401, 1–5. https://doi.org/10.1155/2015/34940110.1155/2015/349401
  28. 28. U.W. Robert, S.E. Etuk, O.E. Agbasi, U.S. Okorie, Z.T. Abdulrazzaq, A.U. Anonaba, O.T. Ojo (2021): On the hygrothermal properties of sandcrete blocks produced with sawdust as partial replacement of sand, Journal of the Mechanical Behavior of Materials, 30(1); 144–155, https://doi.org/10.1515/jmbm-2021-001510.1515/jmbm-2021-0015
  29. 29. BS 2028 (1975): British Standard Institute, Precast concrete blocks, London
  30. 30. ASTM C150 (2020): Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA
  31. 31. U.W. Robert, S.E. Etuk, O.E. Agbasi, S.A. Ekong, Z.T. Abdulrazzaq, A.U. Anonaba (2021): Investigation of Thermal and Strength Properties of Composite Panels Fabricated with Plaster of Paris for Insulation in Buildings, International Journal of Thermophysics, 42(2), 1-18, https://doi.org/10.1007/s10765-020-02780-y10.1007/s10765-020-02780-y
  32. 32. S.E. Etuk, O.E. Agbasi, S.S. Ekpo, U.W. Robert, (2020): Gamma Radiation determination of absorption coefficients of cement sand block, Cumhuriyet Science Journal, 41(1), 38 – 42; https://dx.doi.org/10.177776/csj.62431810.17776/csj.624318
  33. 33. S.E. Etuk, O.E. Agbasi, Z.T. Abdulrazzaq, U.W. Robert (2018): Investigation of thermophysical properties of Alates (swarmers) termites wing as potential raw material for insulation, International Journal of Scientific World, 6(1), 1 – 7, https://doi.org/10.14419/ijsw.v6i1.852910.14419/ijsw.v6i1.8529
  34. 34. U.W. Robert, S.E. Etuk, O.E. Agbasi, G.P. Umoren (2020): Comparison of clay soils of different colors existing under same conditions in a location, Imam Journal of Applied Sciences, 5(2); 68 – 73, https://doi.org/10.4103/ijas_35_1910.4103/ijas.ijas_35_19
  35. 35. USP (2007): Powder Flow. In: The United States Pharmacopeia 30-National Formulary 25 Convention, Rockville.
  36. 36. H. Lu, X. Guo, Y. Liu, X. Gong (2015): Effects of particle size on flow mode and flow characteristics of pulverized coal, Kona Powder Part I, 32; 143–153. https://doi.org/10.14356/kona.201500210.14356/kona.2015002
  37. 37. ASTM C618 (2019): Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for use in concrete, ASTM International, West Conshohocken.
  38. 38. B.M. Alssoun, S. Hwang, K.H. Khayat (2015): Influence of aggregate characteristics on workability of superworkable concrete, Materials and Structures, 49(1), https://doi.org/10.1617/s11527-015-0522-910.1617/s11527-015-0522-9
  39. 39. M. Kang, L. Weibin (2018): Effect of the recycled aggregate concrete, Advances in Materials Science and Engineering, 2428576, https://doi.org/10.1155/2018/242857610.1155/2018/2428576
  40. 40. B. Nagy, D. Szagri (2016): Hygrothermal properties of steel fiber reinforced concretes, Applied Mechanics and Materials, 824; 579–588, https://doi.org/10.4028/www.scientific.net/AMM.824.57910.4028/www.scientific.net/AMM.824.579
  41. 41. C. Egenti, J. M. Khatib, D. Oloke (2013): Analysis of expansion and water absorption of composite compressed earth block, Conference Paper, https://www.researchgate.net/publication
  42. 42. B.K. Baiden, M.M. Tuuli (2004): Impact of Quality Control Practices in Sandcrete Blocks Production, Journal of Architectural Engineering, 10(2), 53–6010.1061/(ASCE)1076-0431(2004)10:2(53)
DOI: https://doi.org/10.2478/adms-2022-0021 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 85 - 97
Published on: Dec 30, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Sylvester Andrew Ekong, David Adeniran Oyegoke, Abayomi Ayodeji Edema, Ubong Williams Robert, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.