Have a personal or library account? Click to login
Analytical Description of Concentration of Radiation Displacement Defects in Oxide Crystals as Function of Electrons or Neutrons Energy Cover

Analytical Description of Concentration of Radiation Displacement Defects in Oxide Crystals as Function of Electrons or Neutrons Energy

By: Piotr Potera  
Open Access
|Oct 2022

References

  1. 1. Ubizskii S.B., Matkovskii A.O., Mironova-Ulmane N., Skvortsova V., Suchocki A., Zhydachevskii Y.A., Potera P.: Displacement Defect Formation in Oxide Crystals under Irradiation. Physica Status Solidii (a) 177 (2000) 349–366.
  2. 2. Pooley D.: F-centre production in alkali halides by electron-hole recombination and a subsequent [110] replacement sequence: a discussion of the electron-hole recombination. Proc. Phys. Soc. 87 (1966) 245–246.
  3. 3. Hersh H.N.: Proposed excitonic mechanism of color-center formation in alkali halides. Phys. Rev. 148(2) (1966) 928–932.
  4. 4. Kristianpoller N., Israeli M.: Excitonic processes and thermoluminescence. Phys. Rev. B 2(6) (1970) 2175–2182.
  5. 5. Sibley W.A., Hen Y.: Radiation damage in MgO. Phys. Rev. 160(3) (1967) 712–716.
  6. 6. Klinger M.I., Lushchik Ch.B., Mashovets T.V., Kholodar G.A., Sheĭnkman M.K., Elango M.A.: Defect formation in solids by decay of electronic excitations. Sov. Phys. Uspekhi. 28(11) (1985) 994–1014.
  7. 7. Rose T.S., Hopkins M.S., Fields R.A.: Characterization and control gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers. IEEE J. Quantum Elect. 31(9) (1995)1593–1602.
  8. 8. Sugak D., Matkovskii A., Durygin A., Suchocki A., Solski I., Ubizskii S., Kopczyński K., Mierczyk Z., Potera P.: Influence of color centers on optical and lasing properties of the gadolinium garnet single crystal doped with Nd3+ ions. J. Luminescence 82 (1999) 9–15.
  9. 9. Bedilov M.R., Egamov U.: Influence of radiation defects on operating characteristics of solid-state lasers. Soviet J. Quantum Elect. 11(7) (1981) 969–970.
  10. 10. Sugak D.Yu., Matkowski A.O., Grabovskii V.V., Prokhorenko V.I., Suchocki A., Durygin A.M., Solskii I.M., Shakhov A.P.: Influence of the γ-radiation on the generation characteristics of the YAlO3:Nd crystals. Acta Phys Polonica 93(4) (1998) 643–648.
  11. 11. Kaminski A.A.: Laser crystals. Their physics and properties. Springer, Berlin, 1981
  12. 12. Chen F., Ju M., Gutsev G.L., Kuang X., Lu C., Yeung Y.: Structure and luminescence properties of a Nd3+ doped Bi4Ge3O12 scintillation crystal: new insights from a comprehensive study. J. Mater. Chem. C 5 (2017) 3079–3087.
  13. 13. Chen F., Ju M., Kuang X., Yeung Y.: Insights into the Microstructure and Transition Mechanism for Nd3+-Doped Bi4Si3O12: A Promising Near-Infrared Laser Material. Inorg. Chem. 57 (8) (2018) 4563–4570.
  14. 14. Di J., Xu X., Xia Ch., Zhoua D., Sai Q., Xu Y.: Growth and spectral properties of Yb:Ca0.28Ba0.72Nb2O6 disordered crystal. Optik 125 (2014) 6620–6624.
  15. 15. Molina P., Rodríguez E., Jaque D., Bausá L.E., García-Solé J., Zhang H., Jiyang W.G., Jiang M.: Optical spectroscopy of neodymium-doped calcium barium niobate ferroelectric crystals. Journal of Luminescence 129 (2009)1658–1660.
  16. 16. Rose T.S., Hopkins M.S., Fields R.A.: Characterization and control of gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers. IEEE. J. Quant. Electronics 31 (1995)1593–1602.
  17. 17. Israel M.H. Cosmic-Ray Electrons between 12 MeV and 1 GeV in 1957. Journal of Geophysical Research 74(19) (1969) 4701–4713.10.1029/JA074i019p04701
  18. 18. Kowatari K., Nagaoka K., Satoh S., Ohta Y., Abukawa J., Tachimori S., Nakamura T.: Evaluation of the Altitude Variation of the Cosmic-ray Induced Environmental Neutrons in the Mt. Fuji Area. Journal of Nuclear Science and Technology 42(6) (2005) 495–502.
  19. 19. Friedland E.: Radiation Damage in Metals. Critical Reviews in Solid State and Material Sciences 25(2) (2001) 87–143.
  20. 20. Kinchin G.H., Pease R.S.: The Displacement of Atoms in Solids by Radiation. Rep. Progr. Phys. 18 (1955) 1–52.
  21. 21. McKinley W.A., Feshbach H.: The Coulomb Scattering of Relativistic Electrons by Nuclei. Phys. Rev. 74(12) (1948) 1759–1763.
  22. 22. Ubizskii S.B.: Calculations of concentration of radiation defects in complex compound during cascade-creation irradiation. Electronics - The bulletin of State University “Lvivska Polytechnica” 357 (1998) 88–98.
  23. 23. Potera P.: Concentration of radiation displacement defects in BSO and BGO crystals irradiated by electrons or neutrons. CEJP 6(1) (2008) 52–56.
  24. 24. Veiller L., Crocombette J.P., Ghaleb D.: Molecular dynamics simulation of the a-recoil nucleus displacement cascade in zirconolite. Journal of Nuclear Materials 306 (2002) 61–72.
  25. 25. Aubin-Chevaldonnet V., Gourier D., Caurant D., Esnouf S., Charpentier T., Costantini J.M.: Paramagnetic defects induced by electron irradiation in barium hollandite ceramics for caesium storage. J. Phys.: Condens. Matter 18 (2006) 4007–4027.
  26. 26. Cheng G., Wei N., Wang L., Qi J., Zeng Q., Lu T., Wang Z.: An ab initio molecular dynamics study on the threshold displacement energies in yttrium aluminum garnet. J. Appl. Phys. 126 (2019) 055701.
  27. 27. Database of Ionic Radii, http://abulafia.mt.ic.ac.uk/shannon/ptable.php
  28. 28. Cobett J.B., Burgoin J.C., Point defect in solid. [In] vol 2, semiconductors and molecular crystals. J.H. Crawford, Jr.L.M. Slifkins, [ed] Plenum Press, New York and London, 1975.
  29. 29. Chen S., Bernard D.: On the calculation of atomic displacements using damage energy. Results in Physics 16 (2020) 102835.
  30. 30. Nordlund K., Zinkle S.J., Sand A.E., Granberg F., Averback R.S., Stoller R., Suzudo T., Malerba L., Banhart F., Weber W.J., Willaime F., Dudarev S.L., Simeone D.: Improving atomic displacement and replacement calculations with physically realistic damage models. Nature Communications 9 (2018)1084.
  31. 31. Guo D., He C., Zang H., Zhang P., Ma L., Li T., Cao X.: Re-evaluation of neutron displacement cross sections for silicon carbide by a Monte Carlo approach. Journal of Nuclear Science and Technology 53(2) (2016) 161–172.
  32. 32. Fabelo A.L., Hernández I.P., Pernía D.L., Alfonso Y.A., Inclán C.M.C.: Electron and positron contributions to the displacement per atom profile in bulk multi-walled carbon nanotube material irradiated with gamma rays. Nucleus 53 (2013) 5–9.
  33. 33. Kim J., Pearton S. J., Fares C., Yang J., Ren F., Kima S., Polyakovd A. Y.: Radiation damage effects in Ga2O3 materials and devices. J. Mater. Chem. C 7 (2019) 10–24.
  34. 34. Allam E.E., Inguimbert C., Addarkaoui S., Meulenberg A., Jorio A., Zorkani I.: NIEL calculations for estimating the displacement damage introduced in GaAs irradiated with charged particles. IOP Conf. Series: Materials Science and Engineering 186 (2017) 012005.
DOI: https://doi.org/10.2478/adms-2022-0012 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 41 - 52
Published on: Oct 8, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Piotr Potera, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.