References
- 1. FEPA (The Federal Environmental Protection Authority). 2004. Environmental Impact Assessment Guideline on Pesticides. FEPA, Addis Ababa, Ethiopia.
- 2. Chen, C., Qian, Y., Chen, Q., Tao, C. and Li, C. 2011. Evaluation of pesticide residues in fruits and vegetables from Xiamen, China. Food Control, 22: 1114–1120.
- 3. Ariese, F., Ernst, W.H.O. and Sijm, D.T. 2001. Natural and synthetic organic compounds in the Environment a symposium report. Environmental Toxicology and Pharmacology, 10: 65–80.
- 4. Ebrahima, S., El-Raeyb, R., Hefnawya, A., Ibrahimb, H., Solimana, M., and Abdel-Fattah T.M. 2014. Electrochemical sensor based on polyaniline nanofibers/single wall carbon nanotubes composite for detection of Malathion. Synthetic Metals, 190:13–19.10.1016/j.synthmet.2014.01.021
- 5. Andreescu, S. and Marty, J.L. 2006. Twenty years research in cholinesterase biosensors: From basic research to practical applications. Biomolecular Engineering, 23: 1–15.
- 6. Pohanka, M. 2014. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. International Journal of Molecular Sciences, 15: 9809–9825.
- 7. Pedrosa, V.A., Caetano, J., Machado, S.A.S. and Bertotti, M. 2008. Determination of parathion and carbaryl pesticides in water and food samples using a self assembled monolayer/acetylcholinesterase electrochemical biosensor. Sensors, 8: 4600–4610.
- 8. Sukirtha, T.H. and Usharani, M.V. 2013. Gas chromatography-mass spectrometry determination of organophosphate pesticide residues in water of the irrigation canals the North Zone, Tamil Nadu/India. International Journal of Current Microbiology and Applied Science, 2(8): 321–329.
- 9. Guan, H., Brewer, W. E. and Garris, S. T. 2010. Disposable pipette extraction for the analysis of pesticides in fruit and vegetables using gas chromatography/mass spectrometry. Journal of Chromatography A, 1217: 1867–1874.10.1016/j.chroma.2010.01.04720144461
- 10. Petropoulou, S.S.E., Gikas, E., Tsarbopoulos, A. and Siskos, P.A. 2006. Gas chromatographic– tandem mass spectrometric method for the quantitation of carbofuran, carbaryl and their main metabolites in applicators’ urine. Journal of Chromatography A, 1108(1): 99–110.10.1016/j.chroma.2005.12.05816442549
- 11. Delmulle, B.S., De Saeger, S.M., Sibanda, L., Barna-Vetro, I. and Van Peteghem, C.H. 2005. Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B1 in pig feed. Journal of Agricultural and Food Chemistry, 53(9): 3364–3368.10.1021/jf040480415853373
- 12. Kalele, S.A., Kundu, A.A., Gosavi, S.W., Deobagkar, D.N., Deobagkar, D.D. and Kulkarni, S.K., 2006. Rapid detection of Escherichia coli by using antibody-conjugated silver nanoshells. Small, 2(3): 335–338.10.1002/smll.20050028617193045
- 13. Zhou, H.K., Gan, N., Hou, J.G., Li, T.H. and Cao, Y.T. 2012. Enhanced electrochemiluminescence employed for the selective detection of methyl parathion based on a zirconia nanoparticle film modified electrode. Analytical Sciences, 28: 267–273.
- 14. Liang, M., Fan, K., Pan, Y., Jiang, H., Wang, F., Yang, D., Lu, D., Feng, J., Zhao, J. and Yang, L. 2013. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Analytical Chemistry, 85: 308–312.
- 15. Ahmad, B.M., Lim, J.J., Shameli, K., Ibrahim, N.A. and Tay, M.Y. 2011. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules, 16(9): 7237–7248.10.3390/molecules16097237626413421869751
- 16. Maiti, S., Barman, G. and Konar Laha, J. 2014. Biosynthesized Gold nanoparticles as catalyst. International Journal of Scientific and Engineering Research, 5(7): 1229–1230.
- 17. Huang, X., Wu, H., Liao, X. and Shi, B. 2010. One-step, size-controlled synthesis of gold nanoparticles at room temperature using plant tannin. Green Chemistry, 12(3): 395–399.10.1039/B918176H
- 18. Wang, C.I., Chen, W.T. and Chang, H.T. 2012. Enzyme mimics of Au/Ag nanoparticles for fluorescent detection of acetylcholine. Analytical Chemistry, 84: 9706–9712.
- 19. Huang, H., Chen, R., Ma, J., Yan, L., Zhao, Y., Wang, Y., Zhang, W., Fan, J. and Chen, X. 2014. Graphitic carbon nitride solid nanofilms for selective and recyclable sensing of Cu2+ and Ag+ in water and serum. Chemical Communications, 50(97): 15415–15418.10.1039/C4CC06659F25350907
- 20. Lee, E. Z., Jun, Y. S., Hong, W. H., Thomas, A. and Jin, M. M. 2010. Cubic mesoporous graphitic carbon (IV) nitride: An all-in-one chemosensor for selective optical sensing of metal ions. Angewandte Chemie International Edition, 49: 9706–9710.
- 21. Zhuang, Q., Sun, L. and Yongnian, N. 2017. One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuricions. Talanta, 164: 458–462.10.1016/j.talanta.2016.12.00428107958
- 22. Tian, J., Liu, Q., Asiri, A. M., Al-Youbi, A.O. and Sun, X. 2013. Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Analytical Chemistry, 85: 5595–5599.10.1021/ac400924j23650957
- 23. Zhang, S., Li, J., Zeng, M., Xu, J., Wang, X. and Hu, W. 2014. Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nanoscale, 6(8): 4157–4162.10.1039/c3nr06744k24604235
- 24. Maiti, S., Barman, G. and Laha, J.K. 2016. Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Applied Nanoscience, 6(4):529–538.10.1007/s13204-015-0452-4
- 25. Bisetty, K., Sabela, M.I., Khulu, S., Xhakaza, M. and Ramsarup, L. 2011. Multivariate optimization of voltammetric parameters for the determination of total polyphenolic content in wine samples using an immobilized biosensor. International Journal of Electrochemical, 6: 3631–3643.
- 26. Assis, C.R., CASTRO, P.F.and Bezerra, R.S. 2010. Characterization of acetylcholinesterase from the brain of the amazonian tambaqui (colossoma macropomum) and in vitro effect of organophosphorus and carbamate pesticides. Environmental Toxicology and Chemistry, 29(10): 2243–2248.10.1002/etc.27220872688
- 27. Anastassiades, M., Lehotay, S.J., Stajnbaher, D and Schenich, F.J. 2003. Fast and easy multi residue method employing acetonitrile extraction/partitioning dispersive and solidphase extraction for the determination pesticides residue in produce. Journal of AOAC International, 86(2): 412–418.10.1093/jaoac/86.2.412
- 28. Yang, C., Wang, X., Liu, H., Ge, S., Yu, J. and Yan, M. 2017. On–off–on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride (g-C3N4)–Cu2+ strategy. New Journal of Chemistry, 41(9): 3374–3379.10.1039/C7NJ00098G
- 29. Alim, N.S., Lintang, H.O. and Yuliati, L. 2015. Fabricated metal-free carbon nitride characterizations for fluorescence chemical sensor of nitrate ions. Journal Technologi (Sciences & Engineering), 76 (13): 1–6.10.11113/jt.v76.5812
- 30. Ye, L., Liu, J., Jiang, Z., Peng, T. and Zan, L. 2013. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Applied Catalysis B: Environmental, 142: 1–7.
- 31. Maiti, S., Barman, G. and Konar Laha J. 2016. Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver Nanoparticles. Applied Nanoscience, 6:529–538.10.1007/s13204-015-0452-4
- 32. Song. J.Y., Jang H.K. and Kim, B.S. 2009. Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts. Process Biochemistry, 44(10):1133–1138.10.1016/j.procbio.2009.06.005
- 33. Kim J.S. and Quang D.T. 2007. Calixarene-derived fluorescent probes. Chemical Review, 107: 3780–3799.
- 34. Zhang, Y.; Hei, T.; Cai, Y.; Gao, Q.; Zhang, Q. 2012. Affinity binding-guided fluorescent nanobiosensor for acetylcholinesterase inhibitors via distance modulation between the fluorophore and metallic nanoparticle. Analytical Chemistry, 84: 2830–2836.
- 35. Liu, D.; Chen, W.; Wei, J.; Li, X.; Wang, Z.; Jiang, X. 2012. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Analytical Chemistry, 84: 4185–4191.