Have a personal or library account? Click to login
Pb-Doped CuO Thin Films Synthetized by Sol-Gel Method Cover

Pb-Doped CuO Thin Films Synthetized by Sol-Gel Method

Open Access
|Oct 2022

References

  1. 1. Chang H., Kao M.-J., Cho K.-C., Chen S.-L., Chu K.-H., Chen C.-C., Integration of CuO thin films and dye sensitized solar cells for thermoelectric generators, Current Applied Physics, vol 11 issue 4 (2011) pp. 19–22.
  2. 2. Liu L., Hong K., Ge X., Xu M., Aligned CuO nanorod arrays: fabrication and anisotropic ferromagnetism, Journal of Applied Physics, vol 115 issue 4 (2014) pp. 1147–1150.
  3. 3. Li R., Du J., Luan Y., Xue Y., Zou H., Zhuang G., Li Z., Ionic liquid precursor-based synthesis of CuO nanoplates for gas sensing and amperometric sensing applications, Sensors and Actuators B, vol 65 (2012) pp.156–164.
  4. 4. Jindal K., Tomar M., Gupta V., CuO thin film based uric acid biosensor with enhanced response characteristics, Biosensors and Bioelectronics, vol 38 issue 1 (2012) pp. 11–18.
  5. 5. Inamdar S.M., More V.K., Mandal S.K., CuO nano-particles supported on silica, a new catalyst for facile synthesis of benzimidazoles, benzothiazoles and benzoxazoles, Tetrahedron Letters, vol 54 issue 6 (2013) pp. 579–583.
  6. 6. Yin Z., Ding Y., Zheng Q., Guan L., CuO/polypyrrole core–shell nanocomposites as anode materials for lithium-ion batteries, Electrochemistry Communications, vol 20 (2012) pp. 40–43.
  7. 7. Chen A., Long H., Li X., Li Y., Yang G., Lu P., Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition, Vacuum, vol 83 issue 6 (2009) pp. 927–930.
  8. 8. Gao F., Liu X.J., Zhang J.S., Song M.Z., and Li N., J., Photovoltaic properties of the p-CuO/n-Si heterojunction prepared through reactive magnetron sputtering, Journal of Applied Physics, vol 111 (2012) pp. 084507.
  9. 9. Bayansal F., Çetinkara H.A., Kahraman S., Çakmak H.M., GüderH.S., Nanostructured CuO films prepared by simple solution methods: plate-like, needle like and network-like architectures, Ceramics International, vol 38 issue 3 (2012) pp. 1859–1866.
  10. 10. Saravanan V., Shankar P., Mani G.K., Rayappan J.B.B., Growth and characterization of spray pyrolysis deposited copper oxide thin films: Influence of substrate and annealing temperatures, Journal of Analytical and Applied Pyrolysis, vol 111 (2015) pp. 272–277.
  11. 11. Kaur M., Muthe K.P., Despande S.K., Choudhury S., Singh J.B., Verma N., Gupta S.K.,Yakhmi J.V., Growth and Branching of CuO Nanowires by Thermal Oxidation of Copper, Journal of Crystal Growth, vol 289 issue 2 (2006) pp. 670–675.
  12. 12. Stamataki M., Mylonas D., Tsamakis D., Kompitsas M., Tsakiridis P., Christoforou E., Christoforou, CO-sensing properties of CuxO-based nanostructured thin films grown by reactive pulsed laser deposition, Sensor Letters, vol 11 issue 12 (2013) pp. 1964–1967.
  13. 13. Mukherjee N., Show B., Maji S.K., Madhu U., Bhar S.K., Mitra B.C., Khan G.G., Mondal A.,CuOnano-whiskers: electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity, Materials Letters, vol 65 issue 21–22 (2011) pp. 3248–3250.
  14. 14. Muthe K.P., Vyas J.C., Narang S.N., Aswal D.K., Gupta S.K., Bhattacharya D., Pinto R., Kothiyal G.P., Sabharwal S.C., A study of the CuO phase formation during thin film deposition by molecular beam epitaxy, Thin Solid Films, vol 324 issue 1–2 (1998) pp. 37–43.
  15. 15. Oral A.Y., Mensur E., Aslan M.H., Basaran E., The preparation of copper (II) oxide thin films and the study of their microstructures and optical properties, Materials Chemistry and Physics, vol 83 issue 1 (2004) pp. 140–144.
  16. 16. Mehdi D., Mohamed J., Imen S., Islem B., George M., Michael K., Wissem D., Physical properties of copper oxide thin films prepared by sol–gel spin–coating method, American Journal of Physics and Applications, vol 6 no. 2 (2018) pp. 43–50.
  17. 17. Touka N., Tabli D., Badari K., Effect of annealing temperature on structural and optical properties of copper oxide thin films deposited by sol-gel spin coating method, Journal of Optoelectronics and Advanced Materials, vol 21 issue 12 (2019) pp. 698–701.
  18. 18. Klug H.P., Alexander L.E., X-ray diffraction procedures for polycristalline and amorphous materials, Wiley, New York, second edition, 618 (1974).
  19. 19. Dastan D., Panahi S.L., Chaure N.B., Characterization of titania thin films grown by dip-coating technique. Journal of Materials Science: Materials in Electronics, vol 27 issue 12 (2016) pp. 12291–12296.
  20. 20. Malek M.F., Mamat M.H., Sahdan M.Z., Zahidi M.M., Khusaimi Z., Mahmood M.R., Influence of various sol concentrations on stress/strain and properties of ZnO thin films synthesised by sol–gel technique, Thin Solid Films, vol 527 (2013) 102–109.
  21. 21. Dastan D., Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel, Applied Physics A, vol 123 issue 11 (2017) pp. 1–13.
  22. 22. Breiby, D. W., Lemke, H. T., Hammershøj, P., Andreasen, J. W., Nielsen, M. M., X-ray diffraction study of directionally grown perylene crystallites, The Journal of Physical Chemistry C, vol 112 issue 12 (2008) pp. 4569–4572.
  23. 23. Jundale D., Pawar S., Chougule M., Godse P., Patil S., Raut B., Sen S., Patil V., Nanocrystalline CuO Thin Films for H2S Monitoring: microstructural and optoelectronic characterization, Journal of Sensor Technology, vol 1 issue 2 (2011) pp. 34–36.
DOI: https://doi.org/10.2478/adms-2022-0009 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 5 - 13
Published on: Oct 8, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Dalila Tabli, Nassim Touka, Kamel Baddari, Nourddine Selmi, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.