Have a personal or library account? Click to login
Electrical Characteristics of Dry Cement – Based Composites Modified with Coconut Husk Ash Nanomaterial Cover

Electrical Characteristics of Dry Cement – Based Composites Modified with Coconut Husk Ash Nanomaterial

Open Access
|Jul 2022

References

  1. 1. World Green Building Council, 2017. Global Status Report │UN environment and international energy agency [www Document]. URL. https://www.worldgbc.org/news-media/global-status-report-2017
  2. 2. Haung H., Gao X., Wang H., Ye H., 2017. Influence of rice husk on strength and permeability of ultra-high performance concrete, Construction and Building Materials. Vol. 149: 621 – 628, doi.org/10.1016/j.conbuildmat.2017.05.15510.1016/j.conbuildmat.2017.05.155
  3. 3. Andrew R.M., 2019. Global CO2 emission from cement production, 1928 – 2018, Earth System Science Data, Vol. 11, Iss. 4: 1675 – 1710, doi.org/10.5194/essd-11-1675-201910.5194/essd-11-1675-2019
  4. 4. Sun J., Xu K., Shi C., Ma J., Li W., Shen X., 2017. Influence of core/shell TiO2@SiO2 nanoparticles on cement hydration, Construction and Building Materials. Vol. 156; 114 – 122, doi.org/10.1016/j.conbuildmat.2019.08.12410.1016/j.conbuildmat.2017.08.124
  5. 5. Teixeira K.P., Rocha I.P., Carneiro L.D., Flores J., Dauer E.A., Ghahremaninezhad A., 2016. The effect of curing temperature on the properties of cement pastes modified with TiO2 nanoparticles, Materials, Vol. 9, Iss. 11: 952 – 967, doi.org/10.3390/ma911095210.3390/ma9110952545723428774073
  6. 6. Khaloo A., Mobini M.H., Hosseini P., 2016. Influence of different types of nano-SiO2 particles on properties of high-performance concrete, Construction and Building Materials. Vol. 113; 188 – 201, doi.org/10.1016/j.conbuildmat.2016.03.04110.1016/j.conbuildmat.2016.03.041
  7. 7. Liu J., Li Q., Xu S., 2015. Influence of nanoparticles on fluidity and mechanical properties of cement mortar. Construction and Building Materials. Vol. 101; 892 – 901, doi.org/10.1016/j.conbuildmat.2015.10.14910.1016/j.conbuildmat.2015.10.149
  8. 8. Pisello A.L., D’alessandro A., Sambuco S., Rallini M., Ubertini F., Asdrubali F., Materazzi A.L., Cotana F., 2017. Multipurpose experimental characterization of smart nanocomposite cement-based materials for thermal-energy efficiency and strain-sensing capability. Solar Energy Materials and Solar Cells, Vol. 161: 77 – 88, doi.org/10.1016/j.solmat.2016.11.03010.1016/j.solmat.2016.11.030
  9. 9. Yoo D., You I., Lee S., 2017. Electrical properties of cement-based composites with carbon Nanotubes, Graphene, and Graphite Nanofibres. Sensors, Vol. 17, No. 5: 1064 – 1076, doi.org/10.3390/s1705106410.3390/s17051064546966928481296
  10. 10. Cadavid-Giraldo N., Velez-Gallego M.C., Restrepo-Boland A., 2020. Carbon emissions reduction and financial effects of a cap and tax system on an operating supply chain in the cement sector. Journal of Cleaner Production. Vol. 275: 122583, doi.org/10.1016/j.jclepro.2020.12258310.1016/j.jclepro.2020.122583
  11. 11. Snellings R., 2016. Assessing, Understanding and Unlocking Supplementary Cementitious Materials, RILEM Technical Letters, Vol. 1: 50 – 55, doi.org/10.21809/rilemtechlett.2016.1210.21809/rilemtechlett.2016.12
  12. 12. Serivener K., Martirena F., Bishnoi S., Maity S., 2018. Calcined Clay limestone cements (LC3), Cement and Concrete Research. Vol. 114: 49 – 56, doi.org/10.1016/j.cemconres.2017.08.01710.1016/j.cemconres.2017.08.017
  13. 13. Charitha V., Athira V.S., Jittin V., Bahurudeen A., Nanthagopalan P., 2021. Use of different agro-waste ashes in concrete for effective upcycling of locally available resources. Construction and Building Materials. Vol. 285; 122851, doi.org/10.1016/j.conbuildmat.2021.12285110.1016/j.conbuildmat.2021.122851
  14. 14. Robert U.W., Etuk S.E., Umoren G.P., Agbasi O.E., 2019. Assessment of Thermal and Mechanical Properties of Composite Board produced from Coconut (Cocos nucifera) Husks, Waste Newspapers, and Cassava Starch, International Journal of Thermophysics Vol. 40, No. 9: 83, doi.org/10.1007/s10765-019-2547-810.1007/s10765-019-2547-8
  15. 15. Bőger T., Bianchi S., Salzer C., Pichelin F., 2018.Binderless boards made of milled coconut husk: an analysis of the technical feasibility and process restraints. International Wood Products Journal, Vol. 9, No.1: 3–8, doi.org/10.1080/20426445.2017.140075610.1080/20426445.2017.1400756
  16. 16. Panyakaew S., Fotios S., 2011. New Thermal Insulation boards made from coconut husk and bagasse, Energy and Buildings, Vol. 43, No. 7: 1732 – 1739, doi.org/10.1016/j.enbuild.2011.03.01510.1016/j.enbuild.2011.03.015
  17. 17. Glowacki B., Barbu M.C., Van Wijck J., Chaowana P., 2019. The use of coconut husk in high pressure laminate production, Journal of Tropical Forest Science, Vol. 24, No. 1: 27 – 36
  18. 18. Zafar S.,2021. Energy Potential of Coconut Biomass, Bioenergy Consult, Last accessed: March 19, 2021, www.bioenergyconsult.com
  19. 19. Tajuddin M., Ahmed Z., Ismail H., 2016. A review of natural fibers and processing operations for the production of binderless boards. BioResources, Vol. 11, No. 2: 5600 – 561710.15376/biores.11.2.Tajuddin
  20. 20. Gui Q., Qin M., Li K., 2016. Gas permeability and electrical conductivity of structural concretes: Impact of pore structure and pore saturation, Cement and Concrete Research. Vol. 89: 109 – 11910.1016/j.cemconres.2016.08.009
  21. 21. Xiao L., Ren Z., Shi W., Wei X., 2016. Experimental Study on Chloride permeability in concrete by non-contact electrical resistivity measurement and RCM. Construction and Building Materials. Vol. 123: 27 – 34, doi.org/10.1016/j.conbuildmat.2016.06.11010.1016/j.conbuildmat.2016.06.110
  22. 22. Wang Y., Gong F., Ueda T., Zhang D., 2014. Theoretical Model for estimation of ice content of concrete by using electrical measurements. Procedia Engineering, Vol. 95: 366 – 375, doi.org/10.1016/j.proeng.2014.12.19510.1016/j.proeng.2014.12.195
  23. 23. Gopalakrishnan R., Vignesh B., Jeyalakshmi R., 2020. Mechanical, electrical, and microstructural studies on mamo-TiO2admixtured cement mortar cured with industrial waste water. Engineering Research Express. Vol. 2: 025010, doi.org/10.1088/2631-8695/ab899c10.1088/2631-8695/ab899c
  24. 24. ASTM C136/136M, 2019. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA
  25. 25. Robert U.W., Etuk S.E., Agbasi O.E., Okorie U.S., Abdulrazzaq Z.T., Anonaba A.U., Ojo O.T., 2021. On the hygrothermal properties of sandcrete blocks produced with sawdust as partial replacement of sand. Journal of the Mechanical Behavior of Materials. Vol. 30, No. 1: 144 – 155, doi.org/10.1515/jmbm-2021-001510.1515/jmbm-2021-0015
  26. 26. Yahaya M.D., 2009. Physico-chemical classification of Nigerian cement. Australian Journal of Technology. Vol. 12, No. 3: 164 – 174
  27. 27. Okwadha G.D.O., 2016. Partial Replacement of Cement b Plant solid waste ash in concrete production. IOSR Journal of Mechanical and Civil Engineering. Vol. 13, No. 5: 35 – 40, doi.org/10.9790/1684-130503354010.9790/1684-1305033540
  28. 28. Robert U.W., Etuk S.E., Agbasi O.E., Iboh U.A., Ekpo S.S., 2020.Temperature – dependent Electrical Characteristics of Disc-shaped Compacts fabricated using Calcined Eggshell Nanopowder and Dry Cassava Starch. Powder Metallurgy Progress. Vol. 20, Iss. 1: 12 – 20, doi.org/10.2478/pmp-2020-000210.2478/pmp-2020-0002
  29. 29. Guiling X., Xiaoping C., Cai L., Pan X., Changsui Z., 2016. Experimental investigation on the flowability properties of cohesive carbonaceous powders, Journal of Particulate Science and Technology, 35(3); 322 – 329. doi.org/10.1080/02726351.2016.115491010.1080/02726351.2016.1154910
  30. 30. Lu H., Guo X., Liu Y., Gong X., 2015. Effects of particle size on flow mode and flow characteristics of pulverised coal, Kona Powder Part I., 32; 143 – 53. doi.org/10.14356/kona.201500210.14356/kona.2015002
  31. 31. USP, Powder Flow. In: The United States Pharmacopeia 30-National Formulary 25 Convention, Rockville, 2007.
  32. 32. ASTM C618, 2019. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for use in concrete, ASTM International, West Conshohocken, PA
  33. 33. Ternero F., Rosa L.G., Urban P., Montes J.M., Cuevas F.G., 2021. Influence of Total porosity on the properties of sintered materials – A Review, Metals, Vol. 11, No. 5: 730, doi.org/10.3390/met1105073010.3390/met11050730
  34. 34. Tumidajski P.J., 1996. Electrical conductivity of Portland Cement Mortars. Cement and Concrete Research. Vol. 26, No. 4: 529 - 53410.1016/0008-8846(96)00027-0
DOI: https://doi.org/10.2478/adms-2022-0008 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 64 - 77
Published on: Jul 12, 2022
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Ubong Williams Robert, Sunday Edet Etuk, Sylvester Andrew Ekong, Okechukwu Ebuka Agbasi, Nsikak Edet Ekpenyong, Samuel Sunday Akpan, Eme Aniefiok Umana, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.