Have a personal or library account? Click to login
Microstructural Evaluation of the High-Frequency Induction Welded Joints of Low Carbon Steel Pipes Cover

Microstructural Evaluation of the High-Frequency Induction Welded Joints of Low Carbon Steel Pipes

Open Access
|Dec 2021

References

  1. 1. Sajek A., Welding Thermal Cycles of Joints Made of S1100QL Steel by Saw and Hybrid PlasmaMag Processes, Adv. Mater. Sci. 20 (2020) 75–86.10.2478/adms-2020-0023
  2. 2. Ziewiec A., Tasak E., Witkowska M., Ziewiec K., Microstructure and Properties of Welds of SemiAustenitic Precipitation Hardening Stainlees Steel after Heat Treatment, Arch. Metall. Mater. 58 (2013) 613–617.10.2478/amm-2013-0046
  3. 3. Janiczak R., Pańcikiewicz K.,, Laser welding of austenitic ferrofluid container for the KRAKsat satellite, Weld. World. 65 (2021) 1347–1357.10.1007/s40194-021-01103-5
  4. 4. Kocurek R., Adamiec J., The Repair Welding Technology of Casts Magnesium Alloy QE22, Solid State Phenom. 212 (2013) 81–86.10.4028/www.scientific.net/SSP.212.81
  5. 5. Górka J., Przybyła M., Szmul M., Chudzio A., Ładak D., Orbital TIG Welding of Titanium Tubes with Perforated Bottom Made of Titanium-Clad Steel, Adv. Mater. Sci. 19 (2019) 55–64.10.2478/adms-2019-0017
  6. 6. Adamiec J., Pfeifer T., Rykała J., CMT and MIG-Pulse Robotized Welding of Thin-Walled Elements Made of 6xxx and 2xxx Series Aluminium Alloys, Solid State Phenom. 191 (2012) 45–56.10.4028/www.scientific.net/SSP.191.45
  7. 7. De Backer M., Van Minnebruggen K., De Waele W., The influence of material anisotropy and spiral welding on tensile strain capacity of spiral welded pipes, Int. J. Sustain. Constr. Des. 6 (2015) 9.10.21825/scad.v6i3.1132
  8. 8. Simion P., Dia V., Istrate B., Hrituleac G., Hrituleac I., Munteanu C., Study of fatigue behavior of longitudinal welded pipes, IOP Conf. Ser. Mater. Sci. Eng. 145 (2016).10.1088/1757-899X/145/2/022032
  9. 9. EN ISO 3183: Petroleum and natural gas industries - Steel pipe for pipeline transportation systems, 2020.
  10. 10. Liu C., Bhole S.D., Challenges and developments in pipeline weldability and mechanical properties, Sci. Technol. Weld. Join. 18 (2013) 169–181.10.1179/1362171812Y.0000000090
  11. 11. Simion P., Dia V., Istrate B., Munteanu C., Controlling and Monitoring of Welding Parameters for Micro-Alloyed Steel Pipes Produced by High Frequency Electric Welding, Adv. Mater. Res. 1036 (2014) 464–469.10.4028/www.scientific.net/AMR.1036.464
  12. 12. Chen Z., Chen X., Zhou T., Microstructure and Mechanical Properties of J55ERW Steel Pipe Processed by On-Line Spray Water Cooling, Metals (Basel). 7 (2017) 150.10.3390/met7040150
  13. 13. Sabzi M., Kianpour-Barjoie A., Ghobeiti-Hasab M., Mersagh Dezfuli S., Effect of High-Frequency Electric Resistance Welding (HF-ERW) Parameters on Metallurgical Transformations and Tensile Properties of API X52 Microalloy Steel Welding Joint, Arch. Metall. Mater. 63 (2018) 1693–1699.10.24425/amm.2018.125094
  14. 14. Merchant V.E., Laser welding in the pipeline industry, in: D. Belforte (Ed.), Ind. Laser Handb., Springer-Verlag New York Inc., 1992, 91–88.10.1007/978-1-4612-2882-0_8
  15. 15. Nowacki J., Sajek A., Matkowski P., The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding, Arch. Civ. Mech. Eng. 16 (2016) 777–783.10.1016/j.acme.2016.05.001
  16. 16. Pańcikiewicz K., Structure and Properties of Welded Joints of 7CrMoVTiB10-10 (T24) Steel, Adv. Mater. Sci. 18 (2018) 37–47.10.1515/adms-2017-0026
  17. 17. Ziewiec A., Tasak E., Zielińska-Lipiec A., Ziewiec K., Kowalska J., The influence of rapid solidification on the microstructure of the 17Cr–9Ni–3Mo precipitation hardened steel, J. Alloys Compd. 615 (2014) 627–S632.10.1016/j.jallcom.2013.12.192
  18. 18. Rakoczy Ł., Grudzień M., Zielińska-Lipiec A., Contribution of Microstructural Constituents on Hot Cracking of Mar-M247 Nickel Based Superalloy, Arch. Metall. Mater. 63 (2018) 181–189.10.24425/118926
  19. 19. Pańcikiewicz K., Radomski W., Lack of tightness analysis of concealed welded radiators, Eng. Fail. Anal. 114 (2020) 104579.10.1016/j.engfailanal.2020.104579
  20. 20. Güngör Ö.E., Yan P., Thibaux P., Liebeherr M., Bhadeshia H.K.D.H., Quidort D., Investigations Into the Microstructure–Toughness Relation in High Frequency Induction Welded Pipes, 8th Int. Pipeline Conf. Vol. 2, ASMEDC (2010) 577–585.10.1115/IPC2010-31372
  21. 21. Yan P., High frequency induction welding & post-welding heat treatment of steel pipes, University of Cambridge, 2011.
  22. 22. Yan P., Güngör Ö.E., Thibaux P., Liebeherr M., Bhadeshia H.K.D.H., Tackling the toughness of steel pipes produced by high frequency induction welding and heat-treatment, Mater. Sci. Eng. A. 528 (2011) 8492–8499.10.1016/j.msea.2011.07.034
  23. 23. Śloderbach Z., Pająk J., Determination of Ranges of Components of Heat Affected Zone Including Changes of Structure, Arch. Metall. Mater. 60 (2015) 2607–2612.10.1515/amm-2015-0421
  24. 24. Udhayakumar T., Mani E., Effect of HF Welding Process Parameters and Post Heat Treatment in the Development of Micro Alloyed HSLA Steel Tubes for Torsional Applications, J. Mater. Sci. Eng. 06 (2017).10.4172/2169-0022.1000334
  25. 25. Zhang W., Zhao G., Fu Q., Study on the effects and mechanisms of induction heat treatment cycles on toughness of high frequency welded pipe welds, Mater. Sci. Eng. A. 736 (2018) 276–287.10.1016/j.msea.2018.09.004
  26. 26. de Santana I.J., Paulo B., Modenesi P.J., High frequency induction welding simulating on ferritic stainless steels, J. Mater. Process. Technol. 179 (2006) 225–230.10.1016/j.jmatprotec.2006.03.063
  27. 27. Matusiewicz P., Czarski A., Adrian H., Estimation of materials microstructure parameters using computer program SigmaScan Pro, Metall. Foundry Eng. 33 (2007).10.7494/mafe.2007.33.1.33
  28. 28. Wojnar L., Kurzydłowski K., Szala J., Metallography and Microstructures, in: G.F. Vander Voort (Ed.), ASM Handbook, Vol. 9. Metallogr. Microstruct., ASM Int, 2004.
  29. 29. Szala J., Teoretyczne i praktyczne aspekty ilościowego opisu struktury stali ferrytycznoperlitycznych, Hut. - Wiadomości Hut. 1 (2018) 22–28.10.15199/24.2018.9.5
  30. 30. Krawczyk J., Adrian H., The kinetics of austenite grain growth in steel for wind power plant shafts, Arch. Metall. Mater. 55 (2010) 91–99.
DOI: https://doi.org/10.2478/adms-2021-0022 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 19 - 33
Published on: Dec 30, 2021
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Adam Bunsch, Janusz Krawczyk, Piotr Matusiewicz, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.