Have a personal or library account? Click to login
Prediction of Mechanical Properties as a Function of Welding Variables in Robotic Gas Metal Arc Welding of Duplex Stainless Steels SAF 2205 Welds Through Artificial Neural Networks Cover

Prediction of Mechanical Properties as a Function of Welding Variables in Robotic Gas Metal Arc Welding of Duplex Stainless Steels SAF 2205 Welds Through Artificial Neural Networks

Open Access
|Oct 2021

References

  1. 1. Ma M., Shrikrishna K.A., Sathiya P.: The impact of heat input on the strength, toughness, microhardness, microstructure and corrosion aspect of friction welded duplex stainless steel joints. Journal of Manufacturing Process 18 (2015) 92-106.10.1016/j.jmapro.2015.01.004
  2. 2. Zou Y., Ueji R., Fujii H.: Mechanical Properties of advanced active-TIG welded duplex stainless steel and ferrite steel. Materials Science and Engineering A 620 (2015) 140-14810.1016/j.msea.2014.10.006
  3. 3. Palanivel R., Mathews P.K., Murugan N.: Development of mathematical model to predict the mechanical properties of friction stir welded AA6351 aluminum alloy. Journal of Engineering Science and Technology Review 4 (1) (2011) 25-31.10.25103/jestr.041.03
  4. 4. Verma R. P., Pandey K.N.: Multi-response optimization of process parameters of GMA welding of dissimilar AA 6061-T6 and AA 5083-O aluminium alloy for optimal mechanical properties. Materials Today: Proceedings (2021) in Press.10.1016/j.matpr.2020.11.375
  5. 5. Heidarzadeh A., Saeid T.: Prediction of mechanical properties in friction stir welds of pure copper. Materials and Design 52 (2013) 1077–1087.10.1016/j.matdes.2013.06.068
  6. 6. Luo Y., Liu J., Xu H., Xiong C., Liu L.: Regression modeling and process analysis of resistance spot welding on galvanized steel sheet. Materials and Design 30 (2009) 2547–2555.10.1016/j.matdes.2008.09.031
  7. 7. Marichamy M., Babu S.: Experimental study and Taguchi optimization of process parameter on mechanical properties of A319 aluminum alloy using friction stir welding. Materials Today: Proceedings 39 (2021) 1527–153110.1016/j.matpr.2020.05.476
  8. 8. Rao S.P., Gupta O.P., Murty S.S.N., Rao A.K.: Effect of process parameters and mathematical model for the prediction of bead geometry in pulsed GMA welding. International Journal Advanced Manufacturing Technology 45 (2009) 45 496–505.10.1007/s00170-009-1991-1
  9. 9. Kumar S., Singh, R.: Optimization of process parameters of Metal Inert Gas welding with preheating on AISI 1018 mild steel using grey based Taguchi method. Measurement 148 (2019) 106924.10.1016/j.measurement.2019.106924
  10. 10. Vakili-Tahami F., Majnoun P., Ziaei-Asl A.: Controlling the in-service welding parameters for T-shape steel pipes using neural network. International Journal of Pressure Vessels and Piping 175 (2019) 103937.10.1016/j.ijpvp.2019.103937
  11. 11. Pal S., Pal S.K, Samantaray A.K.: Artificial neural network modeling of weld joint strength prediction of a pulsed Metal Inert Gas welding process using arc signals. Journal of Materials Processing Technology 202 (2008) 464-474.10.1016/j.jmatprotec.2007.09.039
  12. 12. Atharifar H.: Optimum parameters design for friction stir spot welding using a genetically optimized neural network system. Proceedings of the Institution of Mechanical Engineer Part B: Journal of Engineering Manufacture 224 (2009) 403-418.10.1243/09544054JEM1467
  13. 13. Saoudi A., Fellah M., Hezil N., Lerari D., Khamouli F., Atoui L., Bachari K., Morozova J., Obrosov A., Samad M.A.: Prediction of mechanical properties of welded steel X70 pipeline using neural network modelling. International Journal of Pressure Vessels and Piping 186 (2020) 104153.10.1016/j.ijpvp.2020.104153
  14. 14. Sivagurumanikandan N., Saravanan S., Kumar G.S., Raju S., Raghukandan K.: Prediction and optimization of process parameters to enhance the tensile strength of Nd: YAG laser welded super duplex stainless steel. Optik 157 (2018) 833-840.10.1016/j.ijleo.2017.11.146
  15. 15. Chaki S.: Neural networks based prediction modelling of hybrid laser beam welding process parameters with sensitivity analysis. SN Applied Sciences 1(10) (2019) 1-11.10.1007/s42452-019-1264-z
  16. 16. Cortéz V.H.L, Valdés F.A.R, Treviño L.T.: Weldability of martensitic steel by resistance spot welding a neural network optimization in the automotive industry. Materials and Manufacturing Processes 24 (12) 1412-1417.10.1080/10426910903343916
  17. 17. Thekkuden D.T., Mourad A-H.I.: Investigation of feed-forward back propagation ANN using voltage signals for the early prediction of the welding defect. SN Applied Sciences 1 (2019) 1615.10.1007/s42452-019-1660-4
  18. 18. Kim I.S., Son J.S., Park C.E., Lee C.W., Yarlagadda K.D.V Prasad.: A study on prediction of bead height in robotic arc welding using neural network. Journal of Materials Processing Technology 130-131 (2002) 229-234.10.1016/S0924-0136(02)00803-8
  19. 19. Payares-Asprino C., Steele J.P.H.: Optimization of GMAW welding parameters in duplex stainless steel welds mechanical properties. Procedures of the ASME 2009 Pressure Vessels and Piping Division Conference; Prague, Czech Republic; PVP2009:77203.10.1115/PVP2009-77203
  20. 20. ASTM A789/A789M-18 Standard Specification for Seamless and Welded Ferritic/Austenitic Stainless Steel Tubing for General Service; 2018.
  21. 21. ASTM A815/A815M-18 Standard Stainless Steel Specification for Wrought Ferritic, Ferritic/ Austenitic, and Martensitic Stainless Steel Piping Fittings; 2018.
  22. 22. AVESTA WELDING. How to Weld AVESTA SHEFFIELD. Sweden, Trade Literature, 2005.
  23. 23. Payares-Asprino C, Patricia Muñoz-Escalona P.: Modeling to predict the percentage of ferrite as a function of heat input in Gas Metal Arc Welding of duplex stainless steel SAF2205 weldment. Proceedings of ESSC & DUPLEX 2019 Conference 285-294.
  24. 24. ASTM A370.: Standard Test Methods and Definitions for Mechanical Testing of Steel Products, Edition 2019.
  25. 25. ASTM E8/E8M.: Standard Methods for Tension Testing of Metallic Materials, Edition 2018.
  26. 26. Muthupandi V., Srinivassa P.B., Asehadri S.K, Sundaresam S.: Effect of weld metal chemistry and heat input of the structure and properties of duplex stainless steel welds, Materials Science and Engineering A 358 (1-2) (2003) 9-16.10.1016/S0921-5093(03)00077-7
  27. 27. Vahman M., Shamanian M., Golozar M.A., Jalali A., Ahl Sarmadi M., Kangazian J.: The effect of welding heat input on the structure–property relationship of a new grade super duplex stainless steel. Steel Research International 91(1) (2020) 1900347.10.1002/srin.201900347
  28. 28. Lee C-H., Chang K-Ho: Comparative study on girth weld-induced residual stresses between austenitic and duplex stainless steel pipe welds. Applied Thermal Engineering 63 (2014) 140-150.10.1016/j.applthermaleng.2013.11.001
  29. 29. Wu T., Wang J., Li H., Jiang Z., Liu C., Zhang H.: Reformation behavior of austenite in duplex stainless steel with rapid heat treatment. Steel Research International (90)2 (2018) 1800305.10.1002/srin.201800305
  30. 30. Varbai B., Pickle T., Májlinger K.: Effect of heat input and role of nitrogen on the phase evolution of 2205 duplex stainless steel weldment. International Journal of Pressure Vessels and Piping 176 (2019) 103952.10.1016/j.ijpvp.2019.103952
  31. 31. Baghdadchi A., Hosseini A. V., Hurtig K., Karlsson L.: Promoting austenite formation in laser welding of duplex stainless steel-impact of shielding gas and laser reheation. Welding in the World 65 (2021) 499-511.10.1007/s40194-020-01026-7
  32. 32. El-Batahgy A.M., Khourshid A.F., Sharef T.: Effect of laser beam welding parameters on microstructure and properties of duplex stainless steel. Material Science and Applications 2(10) (2011) 1443.10.4236/msa.2011.210195
  33. 33. Haykin S.S.: Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, New York, (1994) 138-229.
  34. 34. Beale M.H., Haga H.B., Demuth H.B.: Neural Network ToolboxTM user’s guide. R22012a, the MathWorks, Inc., Apple Hill Drive Natick, 2012 MA 01760-2098.
  35. 35. Freeman J.A., Skapura D.M.: Algorithms, Applications, and Programming Techniques, Addison-Wesley Publishing Company, USA, 1991.
  36. 36. Kanzow C., Yamashita N., Fukushima M.: Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. Journal of Computational Applied Mathematics 172 (2) (2004) 375-397.10.1016/j.cam.2004.02.013
  37. 37. Nagesh D.S., Datta G.L.: Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. Journal of Materials Processing Technology 123 (2002) 303–312.10.1016/S0924-0136(02)00101-2
DOI: https://doi.org/10.2478/adms-2021-0019 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 75 - 90
Published on: Oct 5, 2021
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Carolina Payares-Asprino, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.