Have a personal or library account? Click to login
A Review on Utilizing the Marine Biorefinery Waste in Construction Raw Materials to Reduce Land Pollution and Enhance Green Environment Cover

A Review on Utilizing the Marine Biorefinery Waste in Construction Raw Materials to Reduce Land Pollution and Enhance Green Environment

Open Access
|Oct 2021

References

  1. 1. B. Safi, M. Saidi, A. Daoui, A. Bellal, A. Mechekak, and K. Toumi, “The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM),” Constr. Build. Mater., vol. 78, pp. 430–438, 2015, doi: 10.1016/j.conbuildmat.2015.01.009.10.1016/j.conbuildmat.2015.01.009
  2. 2. W. A. S. Bin Wan Mohammad, N. H. Othman, M. H. Wan Ibrahim, M. A. Rahim, S. Shahidan, and R. A. Rahman, “A review on seashells ash as partial cement replacement,” IOP Conf. Ser. Mater. Sci. Eng., vol. 271, no. 1, pp. 1–8, 2017, doi: 10.1088/1757-899X/271/1/012059.10.1088/1757-899X/271/1/012059
  3. 3. P. Ballester, I. Mármol, J. Morales, and L. Sánchez, “Use of limestone obtained from waste of the mussel cannery industry for the production of mortars,” Cem. Concr. Res., vol. 37, no. 4, pp. 559–564, 2007, doi: 10.1016/j.cemconres.2007.01.004.10.1016/j.cemconres.2007.01.004
  4. 4. B. Peceño, C. Arenas, B. Alonso-Fariñas, and C. Leiva, “Substitution of Coarse Aggregates with Mollusk-Shell Waste in Acoustic-Absorbing Concrete,” J. Mater. Civ. Eng., vol. 31, no. 6, p. 04019077, 2019, doi: 10.1061/(asce)mt.1943-5533.0002719.10.1061/(ASCE)MT.1943-5533.0002719
  5. 5. G. L. Yoon, B. T. Kim, B. O. Kim, and S. H. Han, “Chemical-mechanical characteristics of crushed oyster-shell,” Waste Manag., vol. 23, no. 9, pp. 825–834, 2003, doi: 10.1016/S0956-053X(02)00159-9.10.1016/S0956-053X(02)00159-9
  6. 6. K. N. R. F. C. Venkata Sai Nagendra, C. Venkata Siva Rama Prasad, “An Experimental Investigation On Properties Of Concrete By Partial Replacement Of Cement With Dolomite And Sand With Crushed Sea Shell,” Int. J. Sci. Technol. Res. Vol. 8, ISSUE 10, Oct. 2019 ISSN 2277-8616, vol. 43, no. July, pp. 1325–1330, 2020, doi: 10.1016/j.matpr.2020.09.164.10.1016/j.matpr.2020.09.164
  7. 7. E. Gartner and H. Hirao, “A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete,” Cem. Concr. Res., vol. 78, pp. 126–142, 2015, doi: 10.1016/j.cemconres.2015.04.012.10.1016/j.cemconres.2015.04.012
  8. 8. F. Soltanzadeh, M. Emam-Jomeh, A. Edalat-Behbahani, and Z. Soltan-Zadeh, “Development and characterization of blended cements containing seashell powder,” Constr. Build. Mater., vol. 161, pp. 292–304, 2018, doi: 10.1016/j.conbuildmat.2017.11.111.10.1016/j.conbuildmat.2017.11.111
  9. 9. G. K. M. Subramanian, M. Balasubramanian, and A. A. Jeya Kumar, “A Review on the Mechanical Properties of Natural Fiber Reinforced Compressed Earth Blocks,” J. Nat. Fibers, vol. 00, no. 00, pp. 1–15, 2021, doi: 10.1080/15440478.2021.1958405.10.1080/15440478.2021.1958405
  10. 10. C. Rahul Rollakanti, C. Venkata Siva Rama Prasad, K. K. Poloju, N. M. Juma Al Muharbi, and Y. Venkat Arun, “An experimental investigation on mechanical properties of concrete by partial replacement of cement with wood ash and fine sea shell powder,” Mater. Today Proc., vol. 43, no. April, pp. 1325–1330, 2020, doi: 10.1016/j.matpr.2020.09.164.10.1016/j.matpr.2020.09.164
  11. 11. F. C. Lo, S. L. Lo, and M. G. Lee, “Effect of partially replacing ordinary Portland cement with municipal solid waste incinerator ashes and rice husk ashes on pervious concrete quality,” Environ. Sci. Pollut. Res., vol. 27, no. 19, pp. 23742–23760, 2020, doi: 10.1007/s11356-020-08796-z.10.1007/s11356-020-08796-z32301089
  12. 12. N. Mikanovic, K. Khayat, M. Pagé, and C. Jolicoeur, “Aqueous CaCO3 dispersions as reference systems for early-age cementitious materials,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 291, no. 1–3, pp. 202–211, 2006, doi: 10.1016/j.colsurfa.2006.06.042.10.1016/j.colsurfa.2006.06.042
  13. 13. Y. M. H. Mustafa, O. S. B. Al-Amoudi, S. Ahmad, M. Maslehuddin, and M. H. Al-Malack, “Utilization of Portland cement with limestone powder and cement kiln dust for stabilization/solidification of oil-contaminated marl soil,” Environ. Sci. Pollut. Res., vol. 28, no. 3, pp. 3196–3216, 2021, doi: 10.1007/s11356-020-10590-w.10.1007/s11356-020-10590-w32910405
  14. 14. D. Chen, P. Zhang, T. Pan, Y. Liao, and H. Zhao, “Evaluation of the eco-friendly crushed waste oyster shell mortars containing supplementary cementitious materials,” J. Clean. Prod., vol. 237, p. 117811, 2019, doi: 10.1016/j.jclepro.2019.117811.10.1016/j.jclepro.2019.117811
  15. 15. T. Sato and F. Diallo, “Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate,” Transp. Res. Rec., no. 2141, pp. 61–67, 2010, doi: 10.3141/2141-11.10.3141/2141-11
  16. 16. C. H. Tsou et al., “Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder,” Polymer (Guildf)., vol. 160, pp. 265–271, 2019, doi: 10.1016/j.polymer.2018.11.048.10.1016/j.polymer.2018.11.048
  17. 17. T. H. Silva, J. Mesquita-Guimarães, B. Henriques, F. S. Silva, and M. C. Fredel, “The potential use of oyster shell waste in new value-added by-product,” Resources, vol. 8, no. 1, pp. 1–15, 2019, doi: 10.3390/resources8010013.10.3390/resources8010013
  18. 18. M. Huang, H. Feng, N. Li, D. Shen, Y. Zhou, and Y. Jia, “Addition of large amount of municipal sewage sludge as raw material in cement clinker production,” Environ. Sci. Pollut. Res., vol. 24, no. 36, pp. 27862–27869, 2017, doi: 10.1007/s11356-017-9949-6.10.1007/s11356-017-9949-628988311
  19. 19. A. Edalat-Behbahani, F. Soltanzadeh, M. Emam-Jomeh, and Z. Soltan-Zadeh, “Sustainable approaches for developing concrete and mortar using waste seashell,” Eur. J. Environ. Civ. Eng., vol. 25, no. 10, pp. 1874–1893, 2021, doi: 10.1080/19648189.2019.1607780.10.1080/19648189.2019.1607780
  20. 20. A. Ahmed, S. Guo, Z. Zhang, C. Shi, and D. Zhu, “A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete,” Constr. Build. Mater., vol. 256, p. 119484, 2020, doi: 10.1016/j.conbuildmat.2020.119484.10.1016/j.conbuildmat.2020.119484
  21. 21. G. Del, Á. El, T. Lagunillas, F. Valeriano, E. Algodón, and F. L. A. Totora, “Study of compressive strength characteristics of coral aggregate concrete,” no. 270, p. 2305, 2013.
  22. 22. S. Motamedi, S. Shamshirband, R. Hashim, D. Petković, and C. Roy, “Estimating unconfined compressive strength of cockle shell-cement-sand mixtures using soft computing methodologies,” Eng. Struct., vol. 98, pp. 49–58, 2015, doi: 10.1016/j.engstruct.2015.03.070.10.1016/j.engstruct.2015.03.070
  23. 23. T. A. Dang, S. Kamali-Bernard, and W. A. Prince, “Design of new blended cement based on marine dredged sediment,” Constr. Build. Mater., vol. 41, pp. 602–611, 2013, doi: 10.1016/j.conbuildmat.2012.11.088.10.1016/j.conbuildmat.2012.11.088
  24. 24. Q. Wang, P. Li, Y. Tian, W. Chen, and C. Su, “Mechanical properties and microstructure of Portland cement concrete prepared with coral reef sand,” J. Wuhan Univ. Technol. Mater. Sci. Ed., vol. 31, no. 5, pp. 996–1001, 2016, doi: 10.1007/s11595-016-1481-x.10.1007/s11595-016-1481-x
  25. 25. J. M. Gao, C. X. Qian, H. F. Liu, B. Wang, and L. Li, “ITZ microstructure of concrete containing GGBS,” Cem. Concr. Res., vol. 35, no. 7, pp. 1299–1304, 2005, doi: 10.1016/j.cemconres.2004.06.042.10.1016/j.cemconres.2004.06.042
  26. 26. D. H. K. Prasad and C. V. S. R. Prasad, “Review Paper on the Effect of Microbiologically induced CaCO 3 Precipitation on Self healing Method of Concrete : Bacterial concrete,” vol. 5, no. Xii, pp. 1045–1049, 2017.
  27. 27. D. Wang, H. Wang, S. Larsson, M. Benzerzour, W. Maherzi, and M. Amar, “Effect of basalt fiber inclusion on the mechanical properties and microstructure of cement-solidified kaolinite,” Constr. Build. Mater., vol. 241, p. 118085, 2020, doi: 10.1016/j.conbuildmat.2020.118085.10.1016/j.conbuildmat.2020.118085
  28. 28. S. Cheng, Z. Shui, T. Sun, R. Yu, G. Zhang, and S. Ding, “Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete,” Appl. Clay Sci., vol. 141, pp. 111–117, 2017, doi: 10.1016/j.clay.2017.02.026.10.1016/j.clay.2017.02.026
  29. 29. W. Kurdowski, “The protective layer and decalcification of C-S-H in the mechanism of chloride corrosion of cement paste,” Cem. Concr. Res., vol. 34, no. 9, pp. 1555–1559, 2004, doi: 10.1016/j.cemconres.2004.03.023.10.1016/j.cemconres.2004.03.023
  30. 30. G. Rajasekaran, “Sulphate attack and ettringite formation in the lime and cement stabilized marine clays,” Ocean Eng., vol. 32, no. 8–9, pp. 1133–1159, 2005, doi: 10.1016/j.oceaneng.2004.08.012.10.1016/j.oceaneng.2004.08.012
  31. 31. F. Martirena and J. Monzó, “Vegetable ashes as Supplementary Cementitious Materials,” Cem. Concr. Res., vol. 114, no. November 2016, pp. 57–64, 2018, doi: 10.1016/j.cemconres.2017.08.015.10.1016/j.cemconres.2017.08.015
  32. 32. E. Aprianti, P. Shafigh, S. Bahri, and J. N. Farahani, “Supplementary cementitious materials origin from agricultural wastes - A review,” Constr. Build. Mater., vol. 74, pp. 176–187, 2015, doi: 10.1016/j.conbuildmat.2014.10.010.10.1016/j.conbuildmat.2014.10.010
  33. 33. D. Wang, Q. Zhao, C. Yang, Y. Chi, W. Qi, and Z. Teng, “Study on frost resistance and vegetation performance of seashell waste pervious concrete in cold area,” Constr. Build. Mater., vol. 265, p. 120758, 2020, doi: 10.1016/j.conbuildmat.2020.120758.10.1016/j.conbuildmat.2020.120758
  34. 34. A. Naqi, S. Siddique, H. K. Kim, and J. G. Jang, “Examining the potential of calcined oyster shell waste as additive in high volume slag cement,” Constr. Build. Mater., vol. 230, p. 116973, 2020, doi: 10.1016/j.conbuildmat.2019.116973.10.1016/j.conbuildmat.2019.116973
  35. 35. J. H. Seo, S. M. Park, B. J. Yang, and J. G. Jang, “Calcined oyster shell powder as an expansive additive in cement mortar,” Materials (Basel)., vol. 12, no. 8, 2019, doi: 10.3390/ma12081322.10.3390/ma12081322651543731018545
  36. 36. R. K. Etim, I. C. Attah, and P. Yohanna, “Experimental study on potential of oyster shell ash in structural strength improvement of lateritic soil for road construction,” Int. J. Pavement Res. Technol., vol. 13, no. 4, pp. 341–351, 2020, doi: 10.1007/s42947-020-0290-y.10.1007/s42947-020-0290-y
  37. 37. F. Marin, N. Le Roy, and B. Marie, “2. MOLLUSK SHELL 2.1. Introduction,” pp. 1099–1125, 2012.
  38. 38. K. C. Panda, S. Behera, and S. Jena, “Effect of rice husk ash on mechanical properties of concrete containing crushed seashell as fine aggregate,” Mater. Today Proc., vol. 32, no. 4, pp. 838–843, 2020, doi: 10.1016/j.matpr.2020.04.049.10.1016/j.matpr.2020.04.049
  39. 39. C. Martínez-García, B. González-Fonteboa, F. Martínez-Abella, and D. Carro-López, “Performance of mussel shell as aggregate in plain concrete,” Constr. Build. Mater., vol. 139, pp. 570–583, 2017, doi: 10.1016/j.conbuildmat.2016.09.091.10.1016/j.conbuildmat.2016.09.091
  40. 40. H. Cuadrado-Rica, N. Sebaibi, M. Boutouil, and B. Boudart, “Properties of ordinary concretes incorporating crushed queen scallop shells,” Mater. Struct. Constr., vol. 49, no. 5, pp. 1805–1816, 2016, doi: 10.1617/s11527-015-0613-7.10.1617/s11527-015-0613-7
  41. 41. J. Burt, A. Bartholomew, A. Bauman, A. Saif, and P. F. Sale, “Coral recruitment and early benthic community development on several materials used in the construction of artificial reefs and breakwaters,” J. Exp. Mar. Bio. Ecol., vol. 373, no. 1, pp. 72–78, 2009, doi: 10.1016/j.jembe.2009.03.009.10.1016/j.jembe.2009.03.009
  42. 42. B. A. Tayeh, M. W. Hasaniyah, A. M. Zeyad, and M. O. Yusuf, “Properties of concrete containing recycled seashells as cement partial replacement: A review,” J. Clean. Prod., vol. 237, p. 117723, 2019, doi: 10.1016/j.jclepro.2019.117723.10.1016/j.jclepro.2019.117723
  43. 43. Mahdi Majedi-Asl and Robabeh Jafari, “The Mathematical Modeling of Self-Purification of the Zarjoob River for Justification of Emission,” J. Environ. Sci. Eng., vol. 1, no. 1, 2012.
  44. 44. C. Arenas, C. Leiva, L. F. Vilches, and H. Cifuentes, “Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers,” Waste Manag., vol. 33, no. 11, pp. 2316–2321, 2013, doi: 10.1016/j.wasman.2013.07.008.10.1016/j.wasman.2013.07.00823916843
  45. 45. K. H. Mo, U. J. Alengaram, M. Z. Jumaat, S. C. Lee, W. I. Goh, and C. W. Yuen, “Recycling of seashell waste in concrete: A review,” Constr. Build. Mater., vol. 162, no. February, pp. 751–764, 2018, doi: 10.1016/j.conbuildmat.2017.12.009.10.1016/j.conbuildmat.2017.12.009
  46. 46. A. Abdelouahed, H. Hebhoub, L. Kherraf, and M. Belachia, “Effect of Cockele Shells on Mortars Performance in Extreme Conditions,” Civ. Environ. Eng. Reports, vol. 29, no. 2, pp. 60–73, 2019, doi: 10.2478/ceer-2019-0017.10.2478/ceer-2019-0017
  47. 47. E. I. Yang, S. T. Yi, and Y. M. Leem, “Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties,” Cem. Concr. Res., vol. 35, no. 11, pp. 2175–2182, 2005, doi: 10.1016/j.cemconres.2005.03.016.10.1016/j.cemconres.2005.03.016
  48. 48. F. Wheaton, “Review of oyster shell properties. Part II. Thermal properties,” Aquac. Eng., vol. 37, no. 1, pp. 14–23, 2007, doi: 10.1016/j.aquaeng.2006.11.002.10.1016/j.aquaeng.2006.11.002
  49. 49. H.-Y. Chen, L. G. LI, Z.-M. Lai, A. K.-H. Kwan, P.-M. Chen, and P.-L. NG, “Effects of Crushed Oyster Shell on Strength and Durability of Marine Concrete Containing Fly Ash and Blastfurnace Slag.,” Mater. Sci., vol. 25, no. 1, 2019, doi: 10.5755/j01.ms.25.1.22437.10.5755/j01.ms.25.1.22437
  50. 50. W. T. Kuo, H. Y. Wang, C. Y. Shu, and D. S. Su, “Engineering properties of controlled low-strength materials containing waste oyster shells,” Constr. Build. Mater., vol. 46, pp. 128–133, 2013, doi: 10.1016/j.conbuildmat.2013.04.020.10.1016/j.conbuildmat.2013.04.020
  51. 51. U. G. Eziefula, J. C. Ezeh, and B. I. Eziefula, “Properties of seashell aggregate concrete: A review,” Constr. Build. Mater., vol. 192, no. March 2019, pp. 287–300, 2018, doi: 10.1016/j.conbuildmat.2018.10.096.10.1016/j.conbuildmat.2018.10.096
  52. 52. M. Azmi and M. Johari, “Cockle Shell Ash Replacement for Cement and Filler in Concrete,” Malaysian J. Civ. Eng., vol. 25, no. 2, pp. 201–211, 2013, doi: 10.11113/mjce.v25n2.303.
  53. 53. A. P. Adewuyi, S. O. Franklin, and K. A. Ibrahim, “Utilization of mollusc shells for concrete production for sustainable environment,” Int. J. Sci. Eng. Res., vol. 6, no. 9, pp. 201–208, 2015.
  54. 54. M. Olivia, A. A. Mifshella, and L. Darmayanti, “Mechanical properties of seashell concrete,” Procedia Eng., vol. 125, pp. 760–764, 2015, doi: 10.1016/j.proeng.2015.11.127.10.1016/j.proeng.2015.11.127
  55. 55. P. Lertwattanaruk, N. Makul, and C. Siripattarapravat, “Utilization of ground waste seashells in cement mortars for masonry and plastering,” J. Environ. Manage., vol. 111, pp. 133–141, 2012, doi: 10.1016/j.jenvman.2012.06.032.10.1016/j.jenvman.2012.06.03222841935
  56. 56. N. D. Binag, “Powdered Shell Wastes as Partial Substitute for Masonry Cement Mortar in Binder, Tiles and Bricks Production,” Int. J. Eng. Res. Technol., vol. 5, no. 7, pp. 70–77, 2016.
  57. 57. G. O. Bamigboye, A. T. Nworgu, A. O. Odetoyan, M. Kareem, D. O. Enabulele, and D. E. Bassey, “Sustainable use of seashells as binder in concrete production: Prospect and challenges,” J. Build. Eng., vol. 34, no. April 2020, p. 101864, 2021, doi: 10.1016/j.jobe.2020.101864.10.1016/j.jobe.2020.101864
  58. 58. J. Burt, A. Bartholomew, A. Bauman, A. Saif, and P. F. Sale, “Coral recruitment and early benthic community development on several materials used in the construction of artificial reefs and breakwaters,” J. Exp. Mar. Bio. Ecol., vol. 373, no. 1, pp. 72–78, 2009, doi: 10.1016/j.jembe.2009.03.009.10.1016/j.jembe.2009.03.009
  59. 59. C. Varhen, S. Carrillo, and G. Ruiz, “Experimental investigation of Peruvian scallop used as fine aggregate in concrete,” Constr. Build. Mater., vol. 136, pp. 533–540, 2017, doi: 10.1016/j.conbuildmat.2017.01.067.10.1016/j.conbuildmat.2017.01.067
  60. 60. G. Bamigboye, D. Enabulele, A. O. Odetoyan, M. A. Kareem, A. Nworgu, and D. Bassey, “Mechanical and durability assessment of concrete containing seashells: A review,” Cogent Eng., vol. 8, no. 1, 2021, doi: 10.1080/23311916.2021.1883830.10.1080/23311916.2021.1883830
  61. 61. S. Ha, J. W. Lee, S. H. Choi, S. H. Kim, K. Kim, and Y. Kim, “Calcination characteristics of oyster shells and their comparison with limestone from the perspective of waste recycling,” J. Mater. Cycles Waste Manag., vol. 21, no. 5, pp. 1075–1084, 2019, doi: 10.1007/s10163-019-00860-2.10.1007/s10163-019-00860-2
  62. 62. Y. Zhang, D. Chen, Y. Liang, K. Qu, K. Lu, S. Chen, and M. Kong, “Study on engineering properties of foam concrete containing waste seashell,” Constr. Build. Mater., vol. 260, p. 119896, 2020, doi: 10.1016/j.conbuildmat.2020.119896.10.1016/j.conbuildmat.2020.119896
  63. 63. E. I. Yang, M. Y. Kim, H. G. Park, and S. T. Yi, “Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete,” Constr. Build. Mater., vol. 24, no. 5, pp. 758–765, 2010, doi: 10.1016/j.conbuildmat.2009.10.032.10.1016/j.conbuildmat.2009.10.032
  64. 64. Y. J. N. Djobo, A. Elimbi, J. Dika Manga, and I. B. Djon Li Ndjock, “Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers,” Constr. Build. Mater., vol. 113, pp. 673–681, 2016, doi: 10.1016/j.conbuildmat.2016.03.104.10.1016/j.conbuildmat.2016.03.104
  65. 65. S. Cheng, Z. Shui, R. Yu, T. Sun, and X. Zhang, “Multiple influences of internal curing and supplementary cementitious materials on the shrinkage and microstructure development of reefs aggregate concrete,” Constr. Build. Mater., vol. 155, pp. 522–530, 2017, doi: 10.1016/j.conbuildmat.2017.08.037.10.1016/j.conbuildmat.2017.08.037
  66. 66. M. D. A. Thomas, R. D. Hooton, A. Scott, and H. Zibara, “The effect of supplementary cementitious materials on chloride binding in hardened cement paste,” Cem. Concr. Res., vol. 42, no. 1, pp. 1–7, 2012, doi: 10.1016/j.cemconres.2011.01.001.10.1016/j.cemconres.2011.01.001
DOI: https://doi.org/10.2478/adms-2021-0017 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 43 - 62
Published on: Oct 5, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Monisha Ravi, Balasubramanian Murugesan, Arul Jeyakumar, Kiranmayi Raparthi, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.