References
- 1. Zhang R., Shao Z., Lin.: A review on modelling techniques for formability prediction of sheet metal forming. International Journal of Lightweight Materials and Manufacture 3 (2018) 115-125.
- 2. Slota J., Jurcisin M., Spisak E.: Experimental and numerical analysis of local mechanical properties of drawn part. Key Engineering Materials 586 (2014) 245-248.
- 3. Nielsen C.V., Bay N.: Review of friction modeling in metal forming processes. Jornal of Materials Processing Technology 255 (2018) 234-241.
- 4. Trzepiecinski T., Lemu H.G.: Recent developments and trends in the friction testing for conventional sheet metal forming and Incremental sheet forming. Metals 10 (2020) 47.
- 5. Wankhede P., Suresh K.: A review on the evaluation of formability in sheet metal forming. Advances in Materials and Processing Technologies 6 (2020) 458-485.10.1080/2374068X.2020.1731229
- 6. Shisode M., Hazrati J., Mishra T., de Rooij M., ten Horn C., van Beeck J., van den Boogaard T.: Modeling boundary friction of coated sheets in sheet metal forming. Tribology International 153 (2021) 106554.
- 7. Xu Z., Huang J., Mao M., Peng L., Lai X.: An investigation on the friction in a micro sheet metal roll forming processes considering adhesion and ploughing. Journal of Materials Processing Technology 285 (2020) 116790.
- 8. Wang C., Ma R., Zhao J., Zhao J.: Calculation method and experimental study of coulomb friction coefficient in sheet metal forming. Journal of Manufacturing Processes 27 (2017) 126-137.
- 9. Wang W., Zhao Y., Wang Z., Hua M., Wei X.: A study on variable friction model in sheet metal forming with advanced high strength steels. Tribology International 93 (2016) 17-28.
- 10. Shisoide M.P., Hazrati J., Mishra T., de Rooij M., van den Boogaard T.: Modeling mixed lubrication friction for sheet metal forming applications. Procedia Manufacturing 47 (2020) 586-590.
- 11. Świerczyńska A., Fydrych D., Landowski M., Rogalski G., Łabanowski, J. Hydrogen embrittlement of X2CrNiMoCuN25-6-3 super duplex stainless steel welded joints under cathodic protection. Construction and Building Materials 238 (2020) 117697.
- 12. Rogalski G., Świerczyńska A., Landowski M., Fydrych D. Mechanical and microstructural characterization of TIG welded dissimilar joints between 304L austenitic stainless steel and Incoloy 800HT nickel alloy. Metals 10 (2020) 559.
- 13. Argatov I.I., Chai Y.S. An artificial neural network supported regression model for wear rate. Tribology International 138 (2019) 211-214.
- 14. Dragan A.: Neural network prediction of brake friction materials wear. Wear 268 (2010) 117-125.
- 15. Jurkovic M., Jurkovic Z., Buljan S.: The tibological state test in metal forming processes using experiment and modelling. Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 383-386.
- 16. Rapetto M.P., Almqvist A., Larsson R., Lugt P.M.: On the influence of surface roughness on real area of contact in normal, dry, friction free, rough contact by using a neural network. Wear 266 (2009) 592-595.
- 17. Grymek S., Druet K., Łubiński J.I.: Perspektywy obliczeń neuronowych w inżynierii łożyskowania. Tribologia 33 (2002) 227-237.
- 18. Trzepieciński T., Lemu H.G.: Application of genetic algorithms to optimize neural networks for selected tribological tests. Journal of Mechanical Engineering and Automation 2 (2012) 69-76.
- 19. Frangu L., Ripa M.: Artificial neural networks applications in Tribology – a survey. NIMIASC2001 – 2001 NATO Advanced Study Institute on Neural Networks for Instrumentation, Measurement and Related Applications: Study Cases Crema, Italy, 9–20 October 2001.
- 20. Trzos M.: Tendencje rozwojowe w modelowaniu zjawisk i procesów tribologicznych. Zagadnienia Eksploatacji Maszyn 151 (2007) 73-87.
- 21. EN 10130:2009. Cold-rolled low carbon steel flat products for cold forming. Technical delivery conditions. European Commitee for Standardization, Brussels, 2009.
- 22. Sedlaček M., Vilhena L.M.S., Vižintin J.: Surface topography modeling for reduced friction. Strojniški Vestnik-Journal of Mechanical Engineering 57 (2011) 674-680.10.5545/sv-jme.2010.140
- 23. Ferrero Bermejo J., Gómez Fernández J.F., Olivencia Polo F., Crespo Márquez A.: A review of the use of artificial neural network models for energy and reliability prediction. A study of the solar PV, hydraulic and wind energy sources. Applied Sciences 9 (2019) 1844.
- 24. Esperacia-Alcázar A.I., Moravec J.: Fitness approximation for bot evolution in genetic programming. Soft Computing 17 (2013) 1479–1487.
- 25. Katoch S., Chauhan S.S., Kumar V. A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications 80 (2021) 8091–8126.10.1007/s11042-020-10139-6759998333162782
- 26. Winiczenko R.: Algorytmy genetyczne i ich zastosowania. Ekonomia, Zarządzanie, Informatyka. Marketing 1 (2008) 107-110.
- 27. Cheng B, Titterington D.M.: Neural networks: A review from a statistical perspective. Statistical Science 9 (1994) 2-54.
- 28. Manual of Statistica Neural Networks Software. StatSoft Inc., Tulsa, 1998.