2. Thomas, W.; Wiesner, C.; Marks, D.; Staines, D. Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials. Science and Technology of Welding and Joining, 2009, 14, 247-253.
4. Threadgill, P.L.; Ahmed, M.; Martin, J.P.; Perrett, J.G.; Wynne, B.P. The use of bobbin tools for friction stir welding of aluminium alloys, Materials Science Forum, 638 2010 1179-1184.10.4028/www.scientific.net/MSF.638-642.1179
6. Hilgert, J.; Dos Santos, J.; Huber, N. Shear layer modelling for bobbin tool friction stir welding. Science and Technology of Welding and Joining, 2012, 17, 454-459.
7. Hilgert, J.; Hütsch, L.L.; dos Santos, J.; Huber, N. Material flow around a bobbin tool for friction stir welding, Excerpt from the Proceedings of the COMSOL Conference, 2010.
10. Durga, B.S. Research scholar optimization of friction stir welding parameters (tool material, tool geometry and tool speed) on aluminium alloys 6061 using Taguchi method. Advanced Research Journals of Science and Technology 2018, 5, 385-407.
11. Dialami, N.; Chiumenti, M.; Cervera, M.; Agelet de Saracibar, C.; Ponthot, J.P. Material flow visualization in friction stir welding via particle tracing. International Journal of Material Forming, 2015, 8, 167-181.
12. Dialami, N.; Cervera, M.; Chiumenti, M. Effect of the tool tilt angle on the heat generation and the material flow in friction stir welding. Metals, 2019, 9, 28.10.3390/met9010028
16. Sued, M.; Pons, D.; Lavroff, J.; Wong, E.-H. Design features for bobbin friction stir welding tools: Development of a conceptual model linking the underlying physics to the production process. Materials & Design, 2014, 54, 632-643.
20. Gadakh, V.S.; Adepu, K. Heat generation model for taper cylindrical pin profile in FSW. Journal of Materials Research and Technology, 2013, 2, 370-375.
21. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Development of metallographic etchants for the microstructure evolution of A6082-T6 BFSW welds. Metals, 2017, 7, 423.10.3390/met7100423
26. Chen, S.; Lu, A.; Yang, D.; Lu, S.; Dong, J.; Dong, C. In: Analysis on flow pattern of bobbin tool friction stir welding for 6082 aluminum, Proceedings of the 1st International joint symposium on joining and welding, 2013; Elsevier: 353-358.10.1533/978-1-78242-164-1.353
28. Kerrar, G.; Merah, N.; Shuaib, A.N.; Fadi, A.-B.; Bazoune, A. Experimental and numerical investigations of friction stir welding of aluminum to copper. In: Applied mechanics, behavior of materials, and engineering systems, Springer: 2017; 129-138.10.1007/978-3-319-41468-3_10
30. Tamadon, A. Characterization of flow-based bobbin friction stir welding process. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2019.
31. Tamadon, A.; Pons, D.; Clucas, D. Analogue modelling of flow patterns in bobbin friction stir welding by the dark-field/bright-field illumination method. Advances in Materials Science, 2020, 20, 56-70.
32. Tamadon, A.; Pons, D.J.; Clucas, D. Structural anatomy of tunnel void defect in bobbin friction stir welding, elucidated by the analogue modelling. Applied System Innovation, 2020, 3, 2.10.3390/asi3010002
34. Krishnan, K. On the formation of onion rings in friction stir welds. Materials Science and Engineering: A, 2002, 327, 246-251.10.1016/S0921-5093(01)01474-5
35. Teimournezhad, J.; Masoumi, A. Experimental investigation of onion ring structure formation in friction stir butt welds of copper plates produced by non-threaded tool pin. Science and Technology of Welding and Joining, 2010, 15, 166-170.
38. Tamadon, A.; Pons, D.J.; Clucas, D. AFM characterization of stir-induced micro-flow features within the AA6082-T6 BFSW welds. Technologies, 2019, 7, 80.10.3390/technologies7040080