Have a personal or library account? Click to login
Mathematical Analysis of the Influence of the Flux-Cored Wire Chemical Composition on the Electrical Parameters and Quality in the Underwater Wet Cutting Cover

Mathematical Analysis of the Influence of the Flux-Cored Wire Chemical Composition on the Electrical Parameters and Quality in the Underwater Wet Cutting

By: S. Parshin,  A. Levchenko,  P. Wang and  A. Maystro  
Open Access
|Mar 2021

References

  1. 1. Surojo E., Putri E.D.W.S., Budiana E.P., Triyono: Recent developments on underwater welding of metallic material. Procedia Structural Integrity 27 (2020), pp. 14–21.10.1016/j.prostr.2020.07.003
  2. 2. Shin J.S., Oh S.Y., Park S., Park H., Kim T.-S., Lee L., Kim Y., Lee J.: Underwater laser cutting of stainless steel up to 100 mm thick for dismantling application in nuclear power plants. Annals of Nuclear Energy 147 (2020), pp. 1–9.10.1016/j.anucene.2020.107655
  3. 3. Jain R.K., Agrawal D.K., Vishwakarma S.C., Choubey A.K., Upadhyaya B.N., Oak S.M.: Development of underwater laser cutting technique for steel and zircaloy for nuclear applications. Pramana 75 (2010), pp. 1253–1258.10.1007/s12043-010-0214-5
  4. 4. Wang L., Xie F., Feng Y., Wang Z.: Innovative methodology and database for underwater robot repair welding: a technical note. ISIJ International 57 (2017), pp. 203–205.10.2355/isijinternational.ISIJINT-2016-407
  5. 5. Yushchenko KA., Bulat A.V., Kakhovsky N.Yu., Samolenko V.I., Maksimov S.Yu., Grigorenko S.G.: Investigation of composition and structure of weld metal of Cr20Ni9Mn2Nb type made in wet underwater welding. The Paton Welding Journal 6-7 (2014), pp. 135–138.10.15407/tpwj2014.06.29
  6. 6. Hristov H.V.: Increasing the efficiency in oxy-arc underwater cutting with exothermic electrodes. Proceedings of Doctoral Scientific Conference. Varna, 18–19 November 2019 г. Naval Academy, Varna, Bulgaria, pp. 111–116.
  7. 7. Moreno-Uribe A.M., Bracarense A.Q., Pessoa E.C.P.: The effect of polarity and hydrostatic pressure on operational characteristics of rutile electrode in underwater welding. Materials 13, 5001 (2020).10.3390/ma13215001766429133171956
  8. 8. Carvalho G.M.D.A., Bracarense A.Q., Pessoa E.C.P., Gonçalves C.N.: Effect of grinding technique on the hardness HAZ of wet underwater multipass welds. Soldagem & Inspeção 25 (2020), pp. 1–9.10.1590/0104-9224/si25.38
  9. 9. Xu C., Guo N., Zhang X., Jiang H., Tan Y., Zhou L.: Influence of welding speed on weld pool dynamics and welding quality in underwater wet FCAW. Journal of Manufacturing Processes 55 (2020), pp. 381–388.10.1016/j.jmapro.2020.03.046
  10. 10. Sun K., Zeng M., Shi Y., Hu Y., Shen X.: Microstructure and corrosion behavior of S32101 stainless steel underwater dry and wet welded joints. Journal of Materials Processing Technology 256 (2018), pp. 190–201.10.1016/j.jmatprotec.2018.02.018
  11. 11. Wang J., Sun Q., Zhang T., Xu P., Feng J.: Experimental study of arc bubble growth and detachment from underwater wet FCAW. Welding in the World 63 (2019), pp. 1747–1759.10.1007/s40194-019-00776-3
  12. 12. Yang Q., Han Y., Jia C., Dong S., Wu C.: Visual investigation on the arc burning behaviors and features in underwater wet FCAW. Journal of Offshore Mechanics and Arctic Engineering 142 (2020), pp. 1–22.10.1115/1.4045914
  13. 13. Świerczyńska A., Fydrych D., Rogalski G.: Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. International Journal of Hydrogen Energy 42(38), (2017), pp. 24532–24540.10.1016/j.ijhydene.2017.07.225
  14. 14. Brätz O., Henkel K.-M. Investigation of diffusible hydrogen content in drawn arc stud weld metal. Welding in the World 63, 4, (2019), pp. 957–965.10.1007/s40194-019-00730-3
  15. 15. Li W., Zhao J., Wang J, Wang J, Jia H., Li Z., Maksimov S.Y.: Research on arc cutting mechanism and procedure of flux-cored cutting wire in water. The International Journal of Advanced Manufacturing Technology 98 (2018), pp. 2895–2904.10.1007/s00170-018-2438-3
  16. 16. Li W., Zhao J., Wang Y., Wang J, Wang J, Jia H., Li Z., Wu J.: Research on underwater flux cored arc cutting mechanism based on simulation of kerf formation. Journal of Manufacturing Processes 40 (2019), pp. 169–177.10.1016/j.jmapro.2019.03.010
  17. 17. Liu D., Lia H., Yan Y., Guo, N., Song X., Feng J.: Effects of processing parameters on arc stability and cutting quality in underwater wet flux-cored arc cutting at shallow water. Journal of Manufacturing Processes 33 (2018), pp. 24–34.10.1016/j.jmapro.2018.04.021
  18. 18. Klett J., Wolf T., Maier H.J., Hassel T.: The applicability of the standard DIN EN ISO 3690 for the analysis of diffusible hydrogen content in underwater wet welding. Materials 13, 3750, (2020).10.3390/ma13173750
  19. 19. Klett J., Hecht-Linowitzki V., Grünzel O., Schmidt E., Maier H.J., Hassel T.: Effect of the water depth on the hydrogen content in SMAW wet welded joints. SN Applied Sciences 2:1269 (2020), pp. 1–14.10.1007/s42452-020-3066-8
  20. 20. Wang J., Shi J., Wang J, Li W., Liu C. Xu G., Maksimov S.Y., Zhu Q.: Numerical study on the temperature field of underwater flux-cored wire arc cutting process. The International Journal of Advanced Manufacturing Technology 91 (2017), pp. 2777–2786.10.1007/s00170-016-9913-5
  21. 21. Zhao B., Chen J., Wu C., Shi L.: Numerical simulation of bubble and arc dynamics during underwater wet flux-cored arc welding. Journal of Manufacturing Processes 59 (2020), pp. 167–185.10.1016/j.jmapro.2020.09.054
  22. 22. Chen H., Guo N., Xu K., Liu C., Wang G.: Investigating the advantages of ultrasonic-assisted welding technique applied in underwater wet welding by in-situ X-ray imaging method. Materials 13(6), 1442 (2020).10.3390/ma13061442714293432245272
  23. 23. Li W., Wang H., Yu R., Wang J., Wang J., Wu M., Maksimov S.Y.: High-speed photography analysis for underwater flux-cored wire arc cutting process. In: Transactions on intelligent welding manufacturing. Springer, Singapore (2020), pp. 141–151.10.1007/978-981-13-8192-8_7
  24. 24. Tomków J., Fydrych D., Wilk K.: Effect of electrode waterproof coating on quality of underwater wet welded joints. Materials 13, 2947, (2020).10.3390/ma13132947
  25. 25. Parshin S., Levchenko A.: Technology and equipment for underwater wet welding and cutting of high strength steel arctic structures using flux-cored wires. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing 539, 1 (2020), p. 012132.10.1088/1755-1315/539/1/012132
  26. 26. Hilton P.A., Khan A.: Underwater cutting using a 1 μm laser source. Journal of Laser Applications 27, 032013 (2015), pp. 1–8.10.2351/1.4922384
  27. 27. Wang J.Y., He C.H., Li W.H., Yang F.: Characteristics of underwater swirling plasma arc cut quality. Advanced Materials Research 97-101 (2010), pp. 3974–3977.10.4028/www.scientific.net/AMR.97-101.3974
DOI: https://doi.org/10.2478/adms-2021-0006 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 77 - 89
Published on: Mar 30, 2021
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 S. Parshin, A. Levchenko, P. Wang, A. Maystro, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.