Have a personal or library account? Click to login
Metallurgical Characterization and Kinetics of Borided 34CrNiMo6 Steel Cover

Metallurgical Characterization and Kinetics of Borided 34CrNiMo6 Steel

By: N. Ucar,  M. Yigit and  A. Calik  
Open Access
|Dec 2020

References

  1. 1. Gong, B., Duan, X.W., Liu, J.S., Liu.J.J., A physically based constitutive model of As-forged 34CrNiMo6 steel andprocessing maps for hot working. Vacuum, 155 (2018) 345–357.10.1016/j.vacuum.2018.06.022
  2. 2. Branco, R., Costa, J.D., Antunes. F.V., Low-cycle fatigue behaviour of 34CrNiMo6 high strength steel. Theoretical and Applied Fracture Mechanics, 58 (2012) 28–34.10.1016/j.tafmec.2012.02.004
  3. 3. Wu, Z., Huang, C., Liu, F., Xia, C., Ke, L., Microstructure and Mechanical Properties of 34CrNiMo6 Steel Repaired by Friction Stir Processing Materials, 12 (2019) 1-11.10.3390/ma12020279
  4. 4. Litoria, A.K., Figueroa, C.A., Bim, L.T., Pruncu, C.I., Joshi, A.A., Hosmani. S.S., Packboriding of low alloy steel: microstructure evolution and migration behaviour of alloying elements. Philosophical Magazine, 100 (2020) 353–378.10.1080/14786435.2019.1680890
  5. 5. Yorulmaz, M.A., An investigation of boriding of medium carbon steels, MSc, Marmara University, Istanbul, Turkey, 2007.
  6. 6. Bejar, M.A., Moreno, E., Abrasive wear resistance of boronized carbon and low-alloy steels. Journal of Materials Processing Technology, 173 (2006) 352-358.10.1016/j.jmatprotec.2005.12.006
  7. 7. Kayali, Y., Investigation of Diffusion Kinetics of Borided AISI P20 Steel in Micro-Wave Furnace. Vacuum, 121 (2015) 129-134.10.1016/j.vacuum.2015.08.006
  8. 8. Uslu, I., Comert, H., Ipek, M., Ozdemir, O., Bindal, C., Evaluation of borides formed on AISI P20 steel. Materials and Design, 28 (2007) 55-61.10.1016/j.matdes.2005.06.013
  9. 9. Yusuf, K.M., Abdullah, B., Saad, N.H., Proceedings of Asia International Conference on Tribology, (2018) 424-426.
  10. 10. Rodríguez-Castro, R., Campos-Silva,I., Martínez-Trinidad, J., Figueroa-López, U., Arzate-Vázquez, I., Hernández-Sánchez, E., Hernández-Sánchez, J., Mechanical behavior of AISI 1045 steels subjected to powder-pack boriding, Kovove Mater, 50 (2012) 357–364.10.4149/km_2012_5_357
  11. 11. Culha, O., Toparli, M., Sahin, S., Aksoy. T., Characterization and determination of FexB layers’ mechanical properties. Journal of Materials Processing Technology, 206 (2008) 231-240.10.1016/j.jmatprotec.2007.12.020
  12. 12. Ucisik, A.H., Zeytin, S., Bindal, C., Boride coating on iron based alloys. Journal of the Australian Ceramic Society, 37 (2001) 83–94.
  13. 13. Gunes, I., Keddam, M., Chegroune, E., Ozcatal. M., Growth kinetics of boride layers formed on 99.0% purity nickel. Bulletin of Materials Science, 38 (2015) 1113–1118.10.1007/s12034-015-0931-y
  14. 14. Dybkov, V.I., Goncharuk, L.V., G. Khoruzha, V.G., Meleshevich, K.A., Samelyuk, A.V., Sidorko. V.R., Diffusional Growth Kinetics of Boride Layers on Iron-Chromium Alloys. Solid State Phenomena, 138 (2008) 181–188.10.4028/www.scientific.net/SSP.138.181
  15. 15. Kulka, M., Makuch, N., Pertek, A., Maldzinski, L., Simulation on growth kinetics of boride layers formed on Fe during gas boriding in H2– BCl3 atmosphere. Journal of Solid State Chemistry, 199 (2013) 196–203.10.1016/j.jssc.2012.12.029
  16. 16. Ortiz-Domínguez, M.O., Gómez-Vargas, A., Ares de Parga, G., Torres-Santiago, G., Velázquez-Mancilla, R., Castellanos-Escamilla, V.A., Mendoza-Camargo, J., Trujillo-Sánchez, R., Modeling of the Growth Kinetics of Boride Layers in Powder-Pack Borided ASTM A36 Steel Based on Two Different Approaches. Advances in Materials Science and Engineering, 2019 (2019) 1-12.10.1155/2019/5985617
  17. 17. Zuno-Silva, J., Ortiz-Domínguez, M., Keddam, M., Elias-Espinosa, M., Damián-Mejía, O., Cardoso-Legorreta, E., Abreu-Quijano, M., Boriding kinetics of Fe2B layers formed on AISI 1045 steel. Journal of Mining and Metallurgy,, Section B: Metallurgy, 50 (2014) 101–107.10.2298/JMMB140323019Z
  18. 18. Keddam, M., Kulka, M.,Simulation of the Growth Kinetics of FeB and Fe2B Layers on AISI D2 Steel by the Integral Method., Physics of Metals and Metallography, 119, (2018) 842–851.10.1134/S0031918X18090065
  19. 19. Zuno-Silva, J., Keddam, M., Ortiz-Domínguez, M., Elias-Espinosac, M.C., Cervantes-Sodid, F., Oseguera-Peña, J., De-Diosf, L.D.F., Gomez-Vargasf, O.A., Materials Research, 21 (2018) 1-10.10.1590/1980-5373-mr-2018-0173
  20. 20. Efe, G.C. Mediha, I., Ozbek, I., Bindal, C., Kinetics of borided 31CrMoV9 and 34CrAlNi7 steels. Materials Characterization, 59 (2008) 23-31.10.1016/j.matchar.2006.10.007
  21. 21. Topuz, P., Aydogmus, T., Aydin, O., Kinetic Investigation of Boronized 34CrAlNi7 Nitriding Steel. International Journal of Engineering and Natural Sciences, 2 (2019) 17-22.
  22. 22. Sahin, S., Effects of boronizing process on the surface roughness and dimensions of AISI 1020, AISI 1040 and AISI 2714. Journal of Materials Processing Technology, 209 (2009) 1736-1741.10.1016/j.jmatprotec.2008.04.040
  23. 23. Joshi, A.A., Hosmani. S.S., Pack-Boronizing of AISI 4140 Steel: Boronizing Mechanism and the Role of Container Design. Journal of Materials and Manufacturing Processes, 29 (2014) 1062–1072.10.1080/10426914.2014.921705
  24. 24. Nora, R.T., Zine, T.M., Abdelkader, K., Youcef, K., Ali, O., Jiang, X., Revista Matéria, Vol. 24, 2019, pp. 1-11.10.1590/s1517-707620190001.0609
  25. 25. Yu, L.G., Chen, X.J., Khor, K.A., Sundararajan, G., FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics. Acta Materialia, 53 (2005) 2361-2368.10.1016/j.actamat.2005.01.043
  26. 26. Sen, S., Sen, U., Bindal, C., An Approachto Kinetic Study of Borided Steels. Surface Coating Technology, 191(2005) 274-285.10.1016/j.surfcoat.2004.03.040
  27. 27. Altinsoy, I., Efe, F.G. Celebi., Ipek, M., Ozbek, I., Zeytin, S., Bindal, C., An investigation on borided AISI 1020 steel. International Advanced in Applied Physics and Materials Sciences, 1569 (2013)43-48.10.1063/1.4849225
  28. 28. Yamazaki, Y., Sugihara, M., Takaki, S., Abiko, K., Iijima, Y., Volume and Grain-Boundary Self-Diffusion in a High-Purity Fe50 mass% Cr Alloy Physica Status Solidi (a), 189 (2002) 97–105.10.1002/1521-396X(200201)189:1<;97::AID-PSSA97>3.0.CO;2-F
  29. 29. Ohta, J., Kako, K., Mayuzumi, M., Kusanagi, H., Abiko. K., In situ Transmission Electron Microscopy of Carbide Precipitation in Fe-50%Cr Alloys at Elevated Temperatures. Materials Transactions, 41 (2000) 130-135.10.2320/matertrans1989.41.130
  30. 30. Rao, D., Upadhyaya, G.S., Sintering of Mo2FeB2 layered cermet containing SiC fibers. Materials Chemistry and Physics, 70 (2001) 336-339.10.1016/S0254-0584(00)00531-9
  31. 31. Azakli, Y., Cengiz, S., Tarakci, M., Gencer, Y., Characterisation of boride layer formed on Fe– Mo binary alloys. Surface Engineering, 32 (2016) 589-595.10.1080/02670844.2016.1148322
  32. 32. Kaouka, A., Allaoui, O., Keddam, M., Growth kinetics of the boride layers formed on SAE 1035 steel. Mat′eriaux and Techniques, 101 (2013)705-712.10.1051/mattech/2014003
  33. 33. Keddam, M., Chegroune, R., Kulka, M., Makuch, N., Panfil, D., Siwak, P., Taktak, S., Characterization, tribological and mechanical properties of plasma paste borided AISI 316 steel. Transactions of the Indian Institute of Metals, 71 (2018) 79–90.10.1007/s12666-017-1142-6
  34. 34. Kunitskii, Y.A., Marek, E.V., Some physical properties of iron borides. Soviet Powder Metallurgy and Metal Ceramics, 10 (1971) 216–218.10.1007/BF00796711
  35. 35. Calik, A., Taylan, F., Sahin, O., Ucar, N., Comparison of mechanical properties of boronized and vanadium carbide coated AISI 1040 steels. Indian Journal of Engineering and Materials Sciences, 16 (2009) 326-330.
  36. 36. Karakas, M.S., Gunen, A., Kanca, E., Yilmaz, E., Boride Layer Growth Kinetics of AISI H13 Steel Borided with Nano-Sized Powders. Archives of Metallurgy and Materials, 63 (2018)159-165
  37. 37. Yoon, J.H., Jee, Y.K., Lee, S.Y., Plasma paste boronizing treatment of the stainless steel AISI 304, Surface and Coatings Technology 112 (1999) 71–7510.1016/S0257-8972(98)00743-9
  38. 38. Campos, I., Ramirez, G., Figueroa, U., Martinez, J., Morales, O., Evaluation of boron mobility on the phases FeB, Fe2B, and diffusion zone in AISI 1045 and M2 steels, Applied Surface Sciences, 253 (2007) 3469–3475.10.1016/j.apsusc.2006.07.046
  39. 39. Pertek, A., Kulka, M., Characterization of complex (BþC) diffusion layers formedon chromium and nickel-based low-carbon steel. Applied Surface Science, 202 (2002) 252–260.10.1016/S0169-4332(02)00940-6
  40. 40. Carbucicchio, M., Palombarini, G., Effects of alloying elements on the growth of iron boride coatings, Journal of Materials Science Letters, 6 (1987)1147-1149.10.1007/BF01729165
  41. 41. Gunes, I., Kinetics of borided gear steels. Sadhana, Vol. 38, No. 3, 2013, pp. 527–541.10.1007/s12046-013-0138-0
  42. 42. Jain, V., Sundararajan, G., Influence of the Pack Thickness of the Boronizing Mixture on the Boriding of Steel. Surface Coating Technology, 149 (2002) 21-26.10.1016/S0257-8972(01)01385-8
  43. 43. Brakman, C.M., Gommers, A.W.J., Mittemeijer, E.J., Boriding of Fe and Fe–C, Fe–Cr, and Fe– Ni alloys; Boride-layer growth kinetics. Journal of Materials Research, 4 (1989) 1354-1370.10.1557/JMR.1989.1354
  44. 44. Mebarek, B., Benguelloula, A., Zanoun, A., Effect of Boride Incubation Time During the Formation of Fe2B Phase, Mat. Res. 21 (2017) 1-610.1590/1980-5373-mr-2017-0647
  45. 45. Gunes, I., Taktak, S., Bindal, C., Yalcin, Y., Ulker, S., Kayali, Y., Investigation of diffusion kinetics of plasma paste borided AISI 8620 steel using a mixture of B2O3 paste and B4C/SiC, Sadhana, 38 (2013) 513–526.10.1007/s12046-013-0136-2
DOI: https://doi.org/10.2478/adms-2020-0021 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 38 - 48
Published on: Dec 31, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 N. Ucar, M. Yigit, A. Calik, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.