Have a personal or library account? Click to login
Influence of Stick Electrode Coating’s Moisture Content on the Diffusible Hydrogen in Underwater Wet Shielded Metal Arc Welding Cover

Influence of Stick Electrode Coating’s Moisture Content on the Diffusible Hydrogen in Underwater Wet Shielded Metal Arc Welding

By: J. Klett and  T. Hassel  
Open Access
|Dec 2020

References

  1. 1. Fydrych, D., Łabanowski, J., Tomków, J., Rogalski, G. (2015). Cold cracking of underwater wet welded S355G10+N high strength steel. Adv. Mater. Sci. 15 (3), 48-56. https://doi.org/10.1515/adms-2015-001510.1515/adms-2015-0015
  2. 2. Świerczyńska, A., Fydrych, D., Rogalski, G. (2017). Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. Int. J. Hydrogen Energy 42 (38), 24532-24540. https://doi.org/10.1016/j.ijhydene.2017.07.22510.1016/j.ijhydene.2017.07.225
  3. 3. Tomków, J., Łabanowski, J., Fydrych, D., Rogalski, G. (2018). Cold cracking of S460N steel in water environment. Pol. Marit. Res. 25 (3), 131-136. https://doi.org/10.2478/pomr-2018-010410.2478/pomr-2018-0104
  4. 4. Klett, J., Hecht-Linowitzki, V., Grünzel, O., Schmidt, E., Maier, H.J., Hassel, T. (2020). Effect of the water depth on the hydrogen content in SMAW wet welded joints. SN Appl. Sci. 2, 1269. https://doi.org/10.1007/s42452-020-3066-810.1007/s42452-020-3066-8
  5. 5. Tomków, J., Rogalski, G., Fydrych, D., Łabanowski, J. (2018). Improvement of S355G10+N steel weldability in water environment by Temper Bead Welding. J. Mater. Process. Technol., 262, 372–381. https://doi.org/10.1016/j.jmatprotec.2018.06.03410.1016/j.jmatprotec.2018.06.034
  6. 6. Menezes, P.H.R., Pessoa, E.C.P., Bracarense, A.Q. (2019). Comparison of underwater wet welding performed with silicate and polymer agglomerated electrodes. J. Mater. Process. Technol., 266, 63–72. https://doi.org/10.1016/j.jmatprotec.2018.10.01910.1016/j.jmatprotec.2018.10.019
  7. 7. Santos, V.R., Monteiro, M.J., Rizzo, F.C., Bracarense, A.Q., Pessoa, E.C.P., Marinho, R.R., Vieira, L.A. (2012). Development of an oxyrutile electrode for wet welding. Weld. J., 12, 319–328.
  8. 8. Klett, J., Mattos, I.B.F., Maier, H.J., e Silva, R.H.G., Hassel, T. (2020). Control of the diffusible hydrogen content in different steel phases through the targeted use of different welding consumables in underwater wet welding. Mater. Corr. 1–13. https://doi.org/10.1002/maco.20201196310.1002/maco.202011963
  9. 9. Klett, J., Hassel, T. (2020). Reducing the risk of hydrogen-induced cold cracks in hyperbaric wet welding of highstrength steels by using austenitic welding consumables. Weld. Cut. 19 (1), 54–60.
  10. 10. Rowe, M., Liu, S. (2001). Recent developments in underwater wet welding. Sci. Technol. Weld Joi. 6 (6), 387–396. https://doi.org/10.1179/stw.2001.6.6.38710.1179/stw.2001.6.6.387
  11. 11. Li, H., Liu, D., Song, Y., Yan, Y., Guo, N., Feng, J. (2017). Microstructure and mechanical properties of underwater wet welded high-carbon-equivalent steel Q460 using austenitic consumables. J. Mater. Process. Technol. 249 (Supplement C), 149-157. https://doi.org/10.1016/j.jmatprotec.2017.06.00910.1016/j.jmatprotec.2017.06.009
  12. 12. Tomków, J., Fydrych, D., Rogalski, G. (2019). Role of Bead Sequence in Underwater Welding. Materials 12, 3372. https://doi.org/10.3390/ma1220337210.3390/ma12203372682935331623063
  13. 13. Tomków, J., Rogalski, G., Fydrych, D., Łabanowski, J. (2019). Advantages of the Application of the Temper Bead Welding Technique During Wet Welding. Materials 12, 915. https://doi.org/10.3390/ma1206091510.3390/ma12060915647155630893901
  14. 14. Fydrych, D., Świerczyńska, A., Rogalski, G., Łabanowski, J. (2016). Temper Bead Welding of S420G2+M Steel in Water Environment, Adv. Mater. Sci. 16 (4), 5-16. https://doi.org/10.1515/adms-2016-001810.1515/adms-2016-0018
  15. 15. Tomków, J., Fydrych, D., Rogalski, G., Łabanowski, J. (2018). Temper Bead Welding of S460N Steel in Wet Welding Conditions. Adv. Mater. Sci. 18 (3), 48-56. https://doi.org/10.1515/adms-2017-003610.1515/adms-2017-0036
  16. 16. Reisgen, U., Olschok, S., Lenz, K. (2018). Induktive Wärmenachbehandlung nass unterwassergeschweißter hochfester Feinkornbaustähle. Schweißen Schneiden, 70 (6), 396-403.
  17. 17. Brätz, O., Henkel, K.-M., Klett, J., Hassel, T. (2018). Anwendung der Induktion für schweißtechnische Erwärmung beim nassen Lichtbogenhandschweißen unter Wasser. Kolloquium Induktionserwärmung in der schweißtechnischen Fertigung, 2, 29–35.
  18. 18. Zhang, H.T., Dai, X.Y., Feng, J.C., Hu, L.L. (2015). Preliminary investigation on real-time induction heating-assisted underwater wet welding. Weld. J. 94 (1), 8-15.
  19. 19. Sun, Q.J., Cheng, W.Q., Liu, Y.B., Wang, J.F., Cai, C.W., Feng, J.C. (2016). Microstructure and mechanical properties of ultrasonic assisted underwater wet welding joints. Mater. Des. 103, 63-70. https://doi.org/10.1016/j.matdes.2016.04.01910.1016/j.matdes.2016.04.019
  20. 20. Chen, H., Guo, N., Liu, C., Zhang, X., Xu, C., Wang, G. (2020). Insight into hydrostatic pressure effects on diffusible hydrogen content in wet welding joints using in-situ X-ray imaging method. Int. J. Hydrogen Energy 45, 10219-10226. https://doi.org/10.1016/j.ijhydene.2020.01.19510.1016/j.ijhydene.2020.01.195
  21. 21. Chen, H., Guo, N., Xu, K., Xu, C., Zhou, L., Wang, G. (2020). In-situ observations of melt degassing and hydrogen removal enhanced by ultrasonics in underwater wet welding. Mater. Des. 188, 108482. https://doi.org/10.1016/j.matdes.2020.10848210.1016/j.matdes.2020.108482
  22. 22. Li, H., North, T.H. (1992). Hydrogen Absorption and Hydrogen Cracking in High Strength Weld Metal. Key. Eng. Mater. 69–70, 95–112. https://doi.org/10.4028/www.scientific.net/KEM.69-710.4028/www.scientific.net/KEM.69-70.95
  23. 23. Kiefer, J.H. (1996). Effects of Moisture Contamination and Welding Parameters on Diffusible Hydrogen. Weld. J. 75 (5), 155-161.
  24. 24. Mutnansky, V. (1983). Shielded gas welding of high-strength martensitic steel. Zvaranie 32 (9), 269-273.
  25. 25. Kussike, S.M. (2015). Hydrophobierung von Stabelektroden für das “nasse” Lichtbogenhandschweißen unter Wasser. Ph.D. Thesis, Leibniz Universität Hannover, Germany.
  26. 26. Deutscher Verband für Schweißtechnik. (2017). DVS Merkblatt 1818: Ausführung von Lichtbogenschweißarbeiten in nasser Umgebung.
  27. 27. Tomków, J., Fydrych, D., Rogalski, G., Łabanowski, J. (2019). Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal. Rev. de Metal. 55 (1), e140. https://doi.org/10.3989/revmetalm.14010.3989/revmetalm.140
  28. 28. Mielnicka, K., Wolski, A., Świerczyńska, A., Rogalski, G., Fydrych, D. (2019). Determination of moisture resistance of covered electrodes according to PN-EN ISO 14372. Weld. Tech. Rev. vol. 91 (7), 23-30. https://doi.org/10.26628/wtr.v91i7.104910.26628/wtr.v91i7.1049
  29. 29. Tomków, J., Fydrych, D., Wilk, K. (2020). Effect of Electrode Waterproof Coating on Quality of Underwater Wet Welded Joints. Mater. 13 (13), 2947. https://doi.org/10.3390/ma1313294710.3390/ma13132947737238132630224
  30. 30. Hecht-Linowitzki, V., Klett, J., Hassel, T. (2016). Automated Underwater Arc Welding. Proceedings of the Symposium on Automated Systems and Technologies, 10/16, 21–26.
  31. 31. ISO - International Organization for Standardization. (2018). ISO 3690:2018-07: Welding and Allied Processes - Determination of Hydrogen Content in Arc Weld Metal.
  32. 32. Klett, J., Wolf, T., Maier, H.J., Hassel, T. (2020). The Applicability of the Standard DIN EN ISO 3690 for the Analysis of Diffusible Hydrogen Content in Underwater Wet Welding. Materials 13 (17), 3750. https://doi.org/10.3390/ma1317375010.3390/ma13173750750356132854263
  33. 33. Ando, S., Asahina, T. (1983). A Study on the Metallurgical Properties of Steel Welds with Underwater Gravity Welding. In Underwater Welding, Proceedings of the International Conference. 255–261.10.1016/B978-0-08-030537-0.50027-2
  34. 34. Da Silva, W.C.D., Ribeiro, L.F., Bracarense, A.Q., Pessoa, E.C.P. (2012). Effect of the Hydrostatic Pressure in the Diffusible Hydrogen at the Underwater Wet Welding. Proceedings of the ASME 31st International Conference OMAE2012-83002 No. 44939, 1–8.10.1115/OMAE2012-83002
  35. 35. Kong, X., Li, C., Zou, Y., Zhang, J., Hu, Y., Wang, J., Qaddoumi, N., Koh, S.-K., Devlin, J. (2016). Measurement and Analysis of the Diffusible Hydrogen in Underwater Wet Welding Joint. MATEC Web Conf., 39, 03004. https://doi.org/10.1051/matecconf/2016390300410.1051/matecconf/20163903004
  36. 36. Moreno-Uribe, A.M., Bracarense, A.Q., Pessoa, E.C.P. (2020). The Effect of Polarity and Hydrostatic Pressure on Operational Characteristics of Rutile Electrode in Underwater Welding. Materials 13, 5001. https://doi.org/10.3390/ma1321500110.3390/ma13215001766429133171956
  37. 37. Parshin, S.G., Levchenko, A.M., Maystro, A.S. (2020). Metallurgical Model of Diffusible Hydrogen and Non-Metallic Slag Inclusions in Underwater Wet Welding of High-Strength Steel. Metals 10, 1498. https://doi.org/10.3390/met1011149810.3390/met10111498
DOI: https://doi.org/10.2478/adms-2020-0020 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 27 - 37
Published on: Dec 31, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 J. Klett, T. Hassel, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.