Have a personal or library account? Click to login
Effect of Temperature on the Properties of Nickel Sulfide Films Performed by Spray Pyrolysis Technique Cover

Effect of Temperature on the Properties of Nickel Sulfide Films Performed by Spray Pyrolysis Technique

Open Access
|Sep 2020

References

  1. 1. Kumar V., Sharma D.K., Sharma K., Dwivedi D.K., Investigation on physical properties of polycrystalline nickel sulphide films grown by simple & economical screen-printing method, Optik 156 (2018) 43–48.10.1016/j.ijleo.2017.10.169
  2. 2. Kershaw S.V., Susha A.S., Rogach A.L., Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties, Chem. Soc. Rev. 42 (2013) 3033–3087.
  3. 3. Chand P., R. Ghosh, Sukriti, Investigation of structural, morphological and optical properties of Zn doped CdS nanostructures synthesized via co-precipitation method, Optik 161 (2018) 44–53.10.1016/j.ijleo.2018.02.031
  4. 4. He J., Mei Y., Zheng W.C., United calculation of the optical and EPR spectral data for Co2+-doped CdS crystal, Optik 194 (2019) 163087.
  5. 5. Behboudnia M., Majlesara M.H., Khanbabaee B., Preparation of ZnS nanorods by ultrasonic waves, Mater. Sci. Eng. B 122 (2005) 160–163.10.1016/j.mseb.2005.05.001
  6. 6. Kristl M., Gyergyek S., Kristl J., Synthesis and characterization of nanosized silver chalcogenides under ultrasonic irradiation, Mater. Express 5 (2015) 359–366.10.1166/mex.2015.1245
  7. 7. Erken O., Gunes M., Kirmizigul F., Gumus C., Investigation of properties the copper sulfide thin films prepared from different copper salts, Optik 168 (2018) 884–891.10.1016/j.ijleo.2018.05.031
  8. 8. Xu H., Wang W., Zhu W., Sonochemical synthesis of crystalline CuS nanoplates via an in situ template route, Mater. lett. 60 (2006) 2203–220610.1016/j.matlet.2005.12.098
  9. 9. Kristl M., Hojnik N., Gyergyek S., M. Drofenik, Sonochemical preparation of copper sulfides with different phases in aqueous solutions, Mater. Res. Bull. 48 (2013) 1184–1188.10.1016/j.materresbull.2012.12.020
  10. 10. Majid S., Ahmad K.S., Analysis of dopant concentration effect on optical and morphological properties of PVD coated Cu-doped Ni3S2 thin films, Optik 187 (2019) 152–163.10.1016/j.ijleo.2019.05.025
  11. 11. Yin P.F., Sun L.L., Zhou C., Sun Y.H., Han X.Y., Deng C.R., Characterization and magnetic property of 3D flower-like nickel sulphide nanocrystals through decomposing bis(thiourea) nickel(II) chloride crystals, Bull. Mater. Sci. 38 (2015) 95–99.10.1007/s12034-014-0815-6
  12. 12. Surendran S., Sankar K.V., Berchmans L.J., Selvan R.K., Polyol synthesis of α-NiS particles and its physic-chemical properties, Mater. Sci. Semicon. Proc. 33 (2015) 16–23.10.1016/j.mssp.2015.01.012
  13. 13. Kim H.J., Yeo T.B., Kim S.K., Rao S.S., Savariraj A.D., Prabakar K., Gopi C.V. V.M., Optimal-Temperature-Based Highly Efficient NiS Counter Electrode for Quantum-Dot-Sensitized Solar Cells, Eur. J. Inorg. Chem. (2014) 4281–4286.10.1002/ejic.201402026
  14. 14. Kim H.J., Kim S.W., Gopi C.V.V.M., Kim S.K., Rao S.S., Jeong M.S., Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode, J. Power Sources 268 (2014) 163–170.10.1016/j.jpowsour.2014.06.007
  15. 15. Gopi C.V.V.M., Rao S.S., Kim S.-K., Punnoose D., Kim H.-J., Highly effective nickel sulfide counter electrode catalyst prepared by optimal hydrothermal treatment for quantum dot-sensitized solar cells, J. Power Sources 275 (2015) 547–556.10.1016/j.jpowsour.2014.11.038
  16. 16. Sun C.C., Ma M.Z., Yang J., Zhang Y.F., Chen P., Huang W., Dong X.C., Phase-controlled synthesis of alpha-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors, Sci. rep. 4 (2014) 7054.
  17. 17. Chen H.C., Jiang J.J., Zhao Y.D., Zhang L., Guo D.Q., Xia D.D., One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance, J. Mate. Chem. A 3 (2015) 428–437.
  18. 18. Yu L., Yang B., Liu Q., Liu J., Wang X., Song D., Wang J., Jing X., Interconnected NiS nanosheets supported by nickel foam: Soaking fabrication and supercapacitors application, J. Electroanal. Chem. 739 (2015) 156–163.
  19. 19. Wang Y., Zhu Q.S., Tao L., Su X.W., Controlled synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries, J. Mater. Chem. 21 (2011) 9248–9254.10.1039/c1jm10271k
  20. 20. Tao H.C., Yang X.L., Zhang L.L., Ni B.B., One step synthesis of nickel sulfide/N-doped graphene composite as anode material for lithium ion batteries, J. Electroanal. Chem. 739 (2015) 36–42.10.1016/j.jelechem.2014.10.035
  21. 21. Zhang Z.J., Zhao H.L., Zeng Z.P., Gao C.H., Wang J., Xia Q., Hierarchical architecture NiS@SiO2 nanoparticles enveloped in grapheme sheets as anode material for lithium ion batteries, Electrochim. Acta 155 (2014) 85–92.10.1016/j.electacta.2014.12.074
  22. 22. Balayeva O.O., Azizov A.A., Muradov M.B., Maharramov A.M., Eyvazova G.M., Alosmanov R.M., Mamiyev Z.Q., Aghamaliyev Z.A., β-NiS and Ni3S4 nanostructures: Fabrication and characterization, Mater. Res. Bull. 75 (2016) 155-161.
  23. 23. Shinde N.M., Xia Q.X., Shinde P.V., Yun J.M., Mane R.S., Kim K.H., Sulphur Source-Inspired Self-Grown 3D NixSy Nanostructures and Their Electrochemical Supercapacitors, ACS Appl. Mater. Inter. 11 (2019) 4551-4559.10.1021/acsami.8b17689
  24. 24. Lee H., Kanai M., Kawai T., Kawai S., Growth of Oriented NiS Films on Si(111) and Al2O3(O12) Substrate by Pulsed Laser Ablation, Jpn. J. Appl. Phys. 32 (1993) 2100.
  25. 25. Sartale S.D., Lokhande C.D., Preparation and characterization of nickel sulphide thin films using successive ionic layer adsorption and reaction (SILAR) method, Mater. Chem. Phys. 72 (2001) 101-104.10.1016/S0254-0584(01)00314-5
  26. 26. Yu S.H., Yoshimura M., Fabrication of Powders and Thin Films of Various Nickel Sulfides by Soft Solution-Processing Routes, Adv. Funct. Mater. 12 (2002) 277-285.10.1002/1616-3028(20020418)12:4<277::AID-ADFM277>3.0.CO;2-M
  27. 27. Zhang L., Yu J.C., Mo M., Wu L., Li Q., Kwong K.W., General Solution-Phase Approach to Oriented Nanostructured Films of Metal Chalcogenides on Metal Foils:  The Case of Nickel Sulfide, J. Am. Chem. Soc. 126 (2004) 8116–8117.10.1021/ja0484505
  28. 28. Akhtar M., Revaprasadu N., Malik M.A., Raftery J., Deposition of phase pure nickel sulfide thin films from bis(O-alkylxanthato)–nickel(II) complexes by the aerosolassisted chemical vapour deposition (AACVD) method, Mater. Sci. Semicon. Proc. 30 (2015) 368–375.10.1016/j.mssp.2014.10.023
  29. 29. Mahadik A.S., Khalate S.A., Kate R.S., Deokate R.J., Chemical Spray Deposited Nickel Sulphide Thin Films for Supercapacitor applications, I. Res. J. Sci. Eng. Special Issue A1 (2017) 195–198.
  30. 30. Cheng Z., Abernathy H., Liu M., Raman Spectroscopy of Nickel Sulfide Ni3S2, J. Phys. Chem. C 111 (2007) 17997-18000.10.1021/jp0770209
  31. 31. Saeed S., Rashid N., Growth and characterization of semiconducting nickel sulfide nanocrystals from air-stable single-source metal organic precursors, Cogent Chem. 1 (2015) 1030195.
  32. 32. Chen F., Yang H., Wang X., Yu H., Facile synthesis and enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts, Chinese J. Catal. 38 (2017) 296–304.10.1016/S1872-2067(16)62554-8
  33. 33. Benramache S., Aoun Y., Lakel S., Benhaoua B., Torchi C., The calculate of optical gap energy and urbach energy of Ni1−xCoxO thin films, Sādhanā 44 (2018) 26.
  34. 34. Klug H.P., Alexander L.E., X-ray diffraction procedures: for polycrystalline and amorphous materials, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. Wiley-VCH, May 1974, p. 992, 1974.
  35. 35. Ho T.A., Bae C.k., Nam H., Kim E., Lee S.Y., Park J.H., Shin H., Metallic Ni3S2 Films Grown by Atomic Layer Deposition as an Efficient and Stable Electrocatalyst for Overall Water Splitting, ACS Appl. Mater. Inter. 16 (2018) 12807–12815.
  36. 36. Dias da Silva J., Campomanes R., Leite D., Orapunt F., O’Leary S.K., Relationship between the optical gap and the optical-absorption tail breadth in amorphous GaAs, J. appl. Phys. 96 (2004) 7052-7059.10.1063/1.1797541
  37. 37. Tauc J., Menth A., States in the gap, J. non-cryst. Solids 8 (1972) 569-585.10.1016/0022-3093(72)90194-9
  38. 38. Urbach F., The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev. 92 (1953) 1324.
  39. 39. Benramache S., Aouassa M., Preparation and Characterization of p‒Type Semiconducting NiO Thin Films Deposited by Sol‒Gel Technique, J. Chem. Mater. Res. 5 (2016) 119–122.
  40. 40. Schmachtenberg V.A.V., Tontini G., Koch J.A., Semione G.D.L., Drago V., Low temperature solventless syntheses of nanocrystalline nickel sulfides with different sulfur sources, J. Phys. Chem. Solids 87 (2015) 253–258.10.1016/j.jpcs.2015.09.005
  41. 41. Reddy A.J., Kokila M.K., Nagabhushana H., Sharma S.C., Rao J.L., Shivakumara C., Nagabhushana B.M., R.P.S. Chakradhar, Structural, EPR, photo and thermoluminescence properties of ZnO:Fe nanoparticles, Mater. Chem. Phys. 133 (2012) 876-883.10.1016/j.matchemphys.2012.01.111
  42. 42. Boughalmi R., Boukhachem A., Kahlaoui M., Maghraoui H., Amlouk M., Physical investigations on Sb2S3 sprayed thin film for optoelectronic applications, Mater. Sci. Semicon. Proc. 26 (2014) 593-602.10.1016/j.mssp.2014.05.059
  43. 43. Caglar M., Ilican S., Caglar Y., Influence of dopant concentration on the optical properties of ZnO: in films by sol–gel method, Thin Solid Films 517 (2009) 5023-5028.10.1016/j.tsf.2009.03.037
  44. 44. J. Tauc, A. Menth, States in the gap, J. Non-Cryst. Solids 8-10 (1972) 569-585.10.1016/0022-3093(72)90194-9
  45. 45. Slama S., Bouhafs M., Ben Mahmoud K.B., Boubaker A, polynomials solution to heat equation for monitoring A3 point evolution during resistance spot welding, I. J. Heat Techn. 26 (2008) 141-149.
  46. 46. Pankove J.I., in: Optical Processes in Semiconductors, Prentice-Hall, New Jersey, 1971, p. 92
DOI: https://doi.org/10.2478/adms-2020-0015 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 36 - 51
Published on: Sep 22, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 A. Gahtar, S. Benramache, C. Zaouche, A. Boukacham, A. Sayah, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.