Have a personal or library account? Click to login
Effect of Depth Surface Defects in Carbon Fibre Reinforced Composite Material on the Selected Recurrence Quantifications Cover

Effect of Depth Surface Defects in Carbon Fibre Reinforced Composite Material on the Selected Recurrence Quantifications

By: K. Ciecieląg,  K. Kęcik and  K. Zaleski  
Open Access
|Jun 2020

References

  1. 1. Litak G., Syta A., Rusinek R., Dynamical changes during composite milling: recurrence and multiscale entropy analysis, International Journal of Advanced Manufacturing Technology 56 (2011), 445–453.10.1007/s00170-011-3195-8
  2. 2. Kęcik K., Ciecieląg K., Zaleski K., Damage detection of composite milling process by recurrence plots and quantifications analysis, The International Journal of Advanced Manufacturing Technology 89 (2017), 133–144.10.1007/s00170-016-9048-8
  3. 3. Kęcik K., Rusinek R., Warminski J., Stability lobes analysis of nickel superalloys milling, International Journal of Bifurcation and Chaos 21(10) (2011), 2943–2954.10.1142/S0218127411030258
  4. 4. Kęcik K., Rusinek R., Warminski J., Weremczuk A., Chatter control in the milling process of composite materials, Journal of Physics: Conference Series 382 (1) (2012), 1–6.10.1088/1742-6596/382/1/012012
  5. 5. Ciecieląg K., Kęcik K., Zaleski K., Influence of defect diameter on its detection in milling process of composite material using recurrence plot technique, Composites Theory and Practice 17(4) (2017), 194-199.
  6. 6. Belaire-Franch J., Testing for Non-Linearity in an artificial financial market: a recurrence quantification approach, Journal of Economic Behavior and Organization 54(4) (2004), 483–494.10.1016/j.jebo.2003.05.001
  7. 7. Marwan N., Wessel N., Meyerfeldt U., Schirdewan A., Kurths J., Recurrence Plot Based Measures of Complexity and its Application to Heart Rate Variability Data, Physics Review E 66(2) (2002), 1-8.10.1103/PhysRevE.66.026702
  8. 8. Grabowski T., Zastosowanie metody reccurence plots w analizie danych pomiarowych, Elektrotechnika i Elektronika 52(2) (2006), 85–96.
  9. 9. Marwan N., Kurths J., Nonlinear analysis of bivariate data with cross-recurrence plots, Physics Letter A 302 (2002), 299–307.10.1016/S0375-9601(02)01170-2
  10. 10. Teng, G.; Zhou, X.; Yang, C.; Zeng, X. A Nonlinear Method for Characterizing Discrete Defects in Thick Multilayer Composites, Applied Sciences 9 (1183) (2019), 1-16.10.3390/app9061183
  11. 11. Eckmann J.P., Oliffson Kamphorst S., Ruelle D., Recurrence Plots of dynamical systems, Europhysics Letters 4(9) (1987), 973–977.10.1209/0295-5075/4/9/004
  12. 12. Fabretti A., Ausloos M.: Recurrence plot and recurrence quantification analysis techniques for detecting a critical regime. examples from financial market indices, International Journal of Modern Physics C 16 (2005), 1–32.10.1142/S0129183105007492
  13. 13. Fraser A. M., Swinney H. L., Independent coordinates for strange attractors from mutual information, Physical Review A 33 (1986), 1134–4110.10.1103/PhysRevA.33.1134
  14. 14. Kennel M., Brown R., Abarbanel H., Determining embedding dimension for phase space reconstruction using a geometrical construction, Physical Review A 45(6) (1992), 3403–3411.10.1103/PhysRevA.45.3403
  15. 15. Yang Dong, Ren Wei-Xen, Hu Yi-Ding, Li Dan, Selection of optimal threshold to construct recurrence plot for structural operational vibration measurements, Journal of Sound and Vibration 349 (1992), 361–374.
  16. 16. Webber C. L. Jr, Zbilut J. P., Dynamical assessment of physiological systems and states using recurrence plot strategies, Journal of Applied Physiology 76(2) (1994), 965–973.10.1152/jappl.1994.76.2.965
  17. 17. Zbilut J. P., Webber C. L. Jr, Embeddings and delays as derived from quantification of recurrence plots, Physics Letters A 171 (1992), 199–203.10.1016/0375-9601(92)90426-M
  18. 18. Marwan N., Carmen Romano M., Thiel M., Kurths J., Recurrence plots for the analysis of complex systems, Physics Reports 438 (2007), 237–329.10.1016/j.physrep.2006.11.001
  19. 19. Marwan N., Donges J. F., Zou Y., Donner R. V., Kurths J., Complex network approach for recurrence analysis of time series, Physics Letter A 373(46) (2009), 4246–4254.10.1016/j.physleta.2009.09.042
  20. 20. Marwan N., Kurths J., Foerster S., Analysing spatially extended high-dimensional dynamics by reccurence plots, Physics Letters A 379 (2014), 894–900.10.1016/j.physleta.2015.01.013
  21. 21. Gao J., Cai H. On the structures and quantification of recurrence plots, Physics Letter A 270 (2000), 75–87.10.1016/S0375-9601(00)00304-2
  22. 22. Wang Z., Yang C. L., Zhou X. J., Teng Y. H., Identification of localized void defects in composite by recurrence quantification analysis of ultrasonic backscattered signal, Russian Journal of Nondestructive Testing 55, 3 (2019), 192–201.10.1134/S1061830919030112
  23. 23. Brandt C., Recurrence quantification analysis as an approach for ultrasonic testing of porous carbon fiber reinforced polymers, in Recurrence Plots and Their Quantifications: Expanding Horizons, Springer International Publisher, 2016.10.1007/978-3-319-29922-8_19
  24. 24. He Y., Qing H., Zhang Sh., Wang D., Zhu Sh., The cutting force and defect analysis in milling of carbon fiber-reinforced polymer (CFRP) composite, The International Journal of Advanced Manufacturing Technology, 93 (2017), 1829-1842.10.1007/s00170-017-0613-6
DOI: https://doi.org/10.2478/adms-2020-0011 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 71 - 80
Published on: Jun 12, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 K. Ciecieląg, K. Kęcik, K. Zaleski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.