Have a personal or library account? Click to login
Cavitation Erosion and Sliding Wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying Cover

Cavitation Erosion and Sliding Wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying

Open Access
|Jun 2020

References

  1. 1. Krella, A.K.; Zakrzewska, D.E. Cavitation Erosion – Phenomenon and Test Rigs. Adv. Mater. Sci. 2018, 18, 15–26, doi:10.1515/adms-2017-0028.10.1515/adms-2017-0028
  2. 2. Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: Oxford, 1995; ISBN 0-19-509409-3.
  3. 3. Soyama, H. Cavitation Peening: A Review. Metals 2020, 10, 270, doi:10.3390/met10020270.10.3390/met10020270
  4. 4. Dular, M.; Osterman, A. Pit clustering in cavitation erosion. Wear 2008, 265, 811–820, doi:10.1016/j.wear.2008.01.005.10.1016/j.wear.2008.01.005
  5. 5. Franc, J.-P.; Michel, J.-M. Fundamentals of Cavitation; Fluid Mechanics and Its Applications; Kluwer Academic Publishers: New York, Boston, Dordrecht, London, Moscow, 2004; Vol. 76; ISBN 90-481-6618-7.
  6. 6. Gottardi, G.; Tocci, M.; Montesano, L.; Pola, A. Cavitation erosion behaviour of an innovative aluminium alloy for Hybrid Aluminium Forging. Wear 2018, 394–395, 1–10, doi:10.1016/j.wear.2017.10.009.10.1016/j.wear.2017.10.009
  7. 7. Szala, M. Application of computer image analysis software for determining incubation period of cavitation erosion – preliminary results. ITM Web Conf. 2017, 15, 06003, doi:10.1051/itmconf/20171506003.10.1051/itmconf/20171506003
  8. 8. Zakrzewska, D.E.; Krella, A.K. Cavitation Erosion Resistance Influence of Material Properties. Adv. Mater. Sci. 2019, 19, 18–34, doi:10.2478/adms-2019-0019.10.2478/adms-2019-0019
  9. 9. Lin, J.; Wang, Z.; Cheng, J.; Kang, M.; Fu, X.; Hong, S. Effect of Initial Surface Roughness on Cavitation Erosion Resistance of Arc-Sprayed Fe-Based Amorphous/Nanocrystalline Coatings. Coatings 2017, 7, 200, doi:10.3390/coatings7110200.10.3390/coatings7110200
  10. 10. Becker, W.T.; Shipley, R.J. ASM Handbook, Volume 11: Failure Analysis and Prevention; 10 edition.; ASM International: Materials Park, Ohio, 2002; ISBN 978-0-87170-704-8.
  11. 11. ASM Handbook Volume 18: Friction, Lubrication, and Wear Technology; ASM Handbook Volume 18:; ASM International, 1992; Vol. 18; ISBN 978-0-87170-380-4.
  12. 12. Szala, M.; Szafran, M.; Macek, W.; Marchenko, S.; Hejwowski, T. Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives. Adv. Sci. Technol. Res. J. 2019, 13, doi:10.12913/22998624/113244.10.12913/22998624/113244
  13. 13. Jegadeeswaran, N.; Ramesh, M.R.; Bhat, K.U. Combating Corrosion Degradation of Turbine Materials Using HVOF Sprayed 25% (Cr3C2-25(Ni20Cr)) + NiCrAlY Coating. Int. J. Corros. 2013, 2013, 824659, doi:10.1155/2013/824659.10.1155/2013/824659
  14. 14. Szymański, K.; Hernas, A.; Moskal, G.; Myalska, H. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers - A review. Surf. Coat. Technol. 2015, 268, 153–164, doi:10.1016/j.surfcoat.2014.10.046.10.1016/j.surfcoat.2014.10.046
  15. 15. Janicki, D. Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying. Materials 2018, 11, 75, doi:10.3390/ma11010075.10.3390/ma11010075579357329304001
  16. 16. Singh, J.; Kumar, S.; Mohapatra, S.K. An erosion and corrosion study on thermally sprayed WCCo-Cr powder synergized with Mo2C/Y2O3/ZrO2 feedstock powders. Wear 2019, 438–439, doi:10.1016/j.wear.2019.01.082.10.1016/j.wear.2019.01.082
  17. 17. Singh, G.; Bala, N.; Chawla, V. Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni-22Cr-10Al-1Y and Ni-22Cr-10Al-1Y-SiC (N) coatings on ASTM-SA213-T22 steel. Int. J. Miner. Metall. Mater. 2020, 27, 401–416, doi:10.1007/s12613-019-1946-y.10.1007/s12613-019-1946-y
  18. 18. Hattori, S.; Mikami, N. Cavitation erosion resistance of stellite alloy weld overlays. Wear 2009, 267, 1954–1960, doi:10.1016/j.wear.2009.05.007.10.1016/j.wear.2009.05.007
  19. 19. Szala, M.; Hejwowski, T.; Lenart, I. Cavitation erosion resistance of Ni-Co based coatings. Adv. Sci. Technol. Res. J. 2014, 8, 36–42, doi:10.12913/22998624.1091876.
  20. 20. Hejwowski, T. Sliding wear resistance of Fe-, Ni- and Co-based alloys for plasma deposition. Vacuum 2006, 80, 1326–1330, doi:10.1016/j.vacuum.2006.01.037.10.1016/j.vacuum.2006.01.037
  21. 21. Maslarevic, A.; Bakic, G.M.; Djukic, M.B.; Rajicic, B.; Maksimovic, V.; Pavkov, V. Microstructure and Wear Behavior of MMC Coatings Deposited by Plasma Transferred Arc Welding and Thermal Flame Spraying Processes. Trans. Indian Inst. Met. 2020, 73, 259–271, doi:10.1007/s12666-019-01831-9.10.1007/s12666-019-01831-9
  22. 22. Janicki, D.M. High Power Diode Laser Cladding of Wear Resistant Metal Matrix Composite Coatings. Solid State Phenom. 2013, 199, 587–592, doi:10.4028/www.scientific.net/SSP.199.587.10.4028/www.scientific.net/SSP.199.587
  23. 23. Lavigne, S.; Pougoum, F.; Savoie, S.; Martinu, L.; Klemberg-Sapieha, J.E.; Schulz, R. Cavitation erosion behavior of HVOF CaviTec coatings. Wear 2017, 386–387, 90–98, doi:10.1016/j.wear.2017.06.003.10.1016/j.wear.2017.06.003
  24. 24. Zhang, P.; Jiang, J.H.; Ma, A.B.; Wang, Z.H.; Wu, Y.P.; Lin, P.H. Cavitation Erosion Resistance of WC-Cr-Co and Cr3C2-NiCr Coatings Prepared by HVOF. Adv. Mater. Res. 2007, 15–17, 199–204, doi:10.4028/www.scientific.net/AMR.15-17.199.10.4028/www.scientific.net/AMR.15-17.199
  25. 25. Szala, M.; Hejwowski, T. Cavitation Erosion Resistance and Wear Mechanism Model of Flame-Sprayed Al2O3-40%TiO2/NiMoAl Cermet Coatings. Coatings 2018, 8, 254, doi:10.3390/coatings8070254.10.3390/coatings8070254
  26. 26. Taillon, G.; Pougoum, F.; Lavigne, S.; Ton-That, L.; Schulz, R.; Bousser, E.; Savoie, S.; Martinu, L.; Klemberg-Sapieha, J.-E. Cavitation erosion mechanisms in stainless steels and in composite metal–ceramic HVOF coatings. Wear 2016, 364–365, 201–210, doi:10.1016/j.wear.2016.07.015.10.1016/j.wear.2016.07.015
  27. 27. Deng, W.; An, Y.; Hou, G.; Li, S.; Zhou, H.; Chen, J. Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings. Ultrason. Sonochem. 2018, 46, 1–9, doi:10.1016/j.ultsonch.2018.04.004.10.1016/j.ultsonch.2018.04.00429739507
  28. 28. Szala, M.; Dudek, A.; Maruszczyk, A.; Walczak, M.; Chmiel, J.; Kowal, M. Effect of atmospheric plasma sprayed TiO2-10% NiAl cermet coating thickness on cavitation erosion, sliding and abrasive wear resistance. Acta Phys. Pol. A 2019, 136, 335–341, doi:10.12693/APhysPolA.136.335.10.12693/APhysPolA.136.335
  29. 29. Sugiyama, K.; Nakahama, S.; Hattori, S.; Nakano, K. Slurry wear and cavitation erosion of thermal-sprayed cermets. Wear 2005, 258, 768–775, doi:10.1016/j.wear.2004.09.006.10.1016/j.wear.2004.09.006
  30. 30. Łatka, L.; Szala, M.; Michalak, M.; Pałka, T. Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3-13%TiO2 coatings. Acta Phys. Pol. A 2019, 136, 342–347, doi:10.12693/APhysPolA.136.342.10.12693/APhysPolA.136.342
  31. 31. Zhou, W.; Zhou, K.; Li, Y.; Deng, C.; Zeng, K. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings. Appl. Surf. Sci. 2017, 416, 33–44, doi:10.1016/j.apsusc.2017.04.132.10.1016/j.apsusc.2017.04.132
  32. 32. Saeidi, S.; Voisey, K.T.; McCartney, D.G. Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings. J. Therm. Spray Technol. 2011, 20, 1231–1243, doi:10.1007/s11666-011-9666-5.10.1007/s11666-011-9666-5
  33. 33. Singh, J.; Kumar, S.; Mohapatra, S.K. Tribological performance of Yttrium (III) and Zirconium (IV) ceramics reinforced WC–10Co4Cr cermet powder HVOF thermally sprayed on X2CrNiMo-17-12-2 steel. Ceram. Int. 2019, 45, 23126–23142, doi:10.1016/j.ceramint.2019.08.007.10.1016/j.ceramint.2019.08.007
  34. 34. Hong, S.; Wu, Y.; Wang, Q.; Ying, G.; Li, G.; Gao, W.; Wang, B.; Guo, W. Microstructure and cavitation–silt erosion behavior of high-velocity oxygen–fuel (HVOF) sprayed Cr3C2–NiCr coating. Surf. Coat. Technol. 2013, 225, 85–91, doi:10.1016/j.surfcoat.2013.03.020.10.1016/j.surfcoat.2013.03.020
  35. 35. Oksa, M.; Turunen, E.; Suhonen, T.; Varis, T.; Hannula, S.-P.; Oksa, M.; Turunen, E.; Suhonen, T.; Varis, T.; Hannula, S.-P. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications. Coatings 2011, 1, 17–52, doi:10.3390/coatings1010017.10.3390/coatings1010017
  36. 36. Michalak, M.; Łatka, L.; Sokołowski, P.; Niemiec, A.; Ambroziak, A. The Microstructure and Selected Mechanical Properties of Al2O3 + 13 wt % TiO2 Plasma Sprayed Coatings. Coatings 2020, 10, 173, doi:10.3390/coatings10020173.10.3390/coatings10020173
  37. 37. Żórawski, W.; Kozerski, S. Scuffing resistance of plasma and HVOF sprayed WC12Co and Cr3C2-25(Ni20Cr) coatings. Surf. Coat. Technol. 2008, 202, 4453–4457, doi:10.1016/j.surfcoat.2008.04.045.10.1016/j.surfcoat.2008.04.045
  38. 38. Ozimina, D.; Madej, M.; Kałdoński, T. The Wear Resistance of HVOF Sprayed Composite Coatings. Tribol. Lett. 2011, 41, 103–111, doi:10.1007/s11249-010-9684-3.10.1007/s11249-010-9684-3
  39. 39. Benegra, M.; Santana, A.L.B.; Maranho, O.; Pintaude, G. Effect of Heat Treatment on Wear Resistance of Nickel Aluminide Coatings Deposited by HVOF and PTA. J. Therm. Spray Technol. 2015, 24, 1111–1116, doi:10.1007/s11666-015-0266-7.10.1007/s11666-015-0266-7
  40. 40. Potthoff, A.; Kratzsch, R.; Barbosa, M.; Kulissa, N.; Kunze, O.; Toma, F.-L. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying. J. Therm. Spray Technol. 2018, 27, 710–717, doi:10.1007/s11666-018-0709-z.10.1007/s11666-018-0709-z
  41. 41. Blum, M.; Krieg, P.; Killinger, A.; Gadow, R.; Luth, J.; Trenkle, F. High Velocity Suspension Flame Spraying (HVSFS) of Metal Suspensions. Materials 2020, 13, 621, doi:10.3390/ma13030621.10.3390/ma13030621704080232019258
  42. 42. Tejero-Martin, D.; Pala, Z.; Rushworth, S.; Hussain, T. Splat formation and microstructure of solution precursor thermal sprayed Nb-doped titanium oxide coatings. Ceram. Int. 2020, 46, 5098–5108, doi:10.1016/j.ceramint.2019.10.253.10.1016/j.ceramint.2019.10.253
  43. 43. Kiilakoski, J.; Musalek, R.; Lukac, F.; Koivuluoto, H.; Vuoristo, P. Evaluating the toughness of APS and HVOF-sprayed Al2O3-ZrO2-coatings by in-situ- and macroscopic bending. J. Eur. Ceram. Soc. 2018, 38, 1908–1918, doi:10.1016/j.jeurceramsoc.2017.11.056.10.1016/j.jeurceramsoc.2017.11.056
  44. 44. Pawłowski, L. 5 - Application of solution precursor spray techniques to obtain ceramic films and coatings. In Future Development of Thermal Spray Coatings; Espallargas, N., Ed.; Woodhead Publishing, 2015; pp. 123–141 ISBN 978-0-85709-769-9.10.1016/B978-0-85709-769-9.00005-1
  45. 45. Myalska, H.; Lusvarghi, L.; Bolelli, G.; Sassatelli, P.; Moskal, G. Tribological behavior of WCCo HVAF-sprayed composite coatings modified by nano-sized TiC addition. Surf. Coat. Technol. 2019, 371, 401–416, doi:10.1016/j.surfcoat.2018.09.017.10.1016/j.surfcoat.2018.09.017
  46. 46. Vijay, S.; Wang, L.; Lyphout, C.; Nylen, P.; Markocsan, N. Surface characteristics investigation of HVAF sprayed cermet coatings. Appl. Surf. Sci. 2019, 493, 956–962, doi:10.1016/j.apsusc.2019.07.079.10.1016/j.apsusc.2019.07.079
  47. 47. Nowak, W.J.; Ochał, K.; Wierzba, P.; Gancarczyk, K.; Wierzba, B. Effect of Substrate Roughness on Oxidation Resistance of an Aluminized Ni-Base Superalloy. Metals 2019, 9, 782, doi:10.3390/met9070782.10.3390/met9070782
  48. 48. Szala, M.; Beer-Lech, K.; Gancarczyk, K.; Kilic, O.B.; Pędrak, P.; Özer, A.; Skic, A. Microstructural Characterisation of Co-Cr-Mo Casting Dental Alloys. Adv. Sci. Technol. Res. J. 2017, 11, 76–82, doi:10.12913/22998624/80901.10.12913/22998624/80901
  49. 49. Szala, M.; Walczak, M. Cavitation erosion and sliding wear resistance of HVOF coatings. Weld. Technol. Rev. 2018, 90, doi:10.26628/wtr.v90i10.964.10.26628/wtr.v90i10.964
  50. 50. ASTM G32-10: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus; ASTM International: West Conshohocken, Philadelphia: PA, USA, 2010;
  51. 51. Szala, M.; Walczak, M.; Pasierbiewicz, K.; Kamiński, M. Cavitation Erosion and Sliding Wear Mechanisms of AlTiN and TiAlN Films Deposited on Stainless Steel Substrate. Coatings 2019, 9, 340, doi:10.3390/coatings9050340.10.3390/coatings9050340
  52. 52. Davis, J.R. Handbook of Thermal Spray Technology; ASM International: OH, USA, 2004; ISBN 978-0-87170-795-6.
  53. 53. Maruszczyk, A.; Dudek, A.; Szala, M. Research into Morphology and Properties of TiO2 – NiAl Atmospheric Plasma Sprayed Coating. Adv. Sci. Technol. Res. J. 2017, 11, 204–210, doi:10.12913/22998624/76450.10.12913/22998624/76450
  54. 54. Cabral-Miramontes, J.A.; Gaona-Tiburcio, C.; Almeraya-Calderón, F.; Estupiñan-Lopez, F.H.; Pedraza-Basulto, G.K.; Poblano-Salas, C.A. Parameter Studies on High-Velocity Oxy-Fuel Spraying of CoNiCrAlY Coatings Used in the Aeronautical Industry. Int. J. Corros. 2014, 2014, 703806, doi:10.1155/2014/703806.10.1155/2014/703806
  55. 55. Walczak, M.; Pieniak, D.; Niewczas, A.M. Effect of recasting on the useful properties CoCrMoW alloy. Eksploat. Niezawodn. – Maint. Reliab. 2014, 16, 330–336.
DOI: https://doi.org/10.2478/adms-2020-0008 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 26 - 38
Published on: Jun 12, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 M. Szala, M. Walczak, L. Łatka, K. Gancarczyk, D. Özkan, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.