Have a personal or library account? Click to login
Prediction of Magnetic Properties of a Plastically Deformed Steel and One Way to Measure its Plastic Deformation Cover

Prediction of Magnetic Properties of a Plastically Deformed Steel and One Way to Measure its Plastic Deformation

By: M.J. Sablik  
Open Access
|Jun 2020

References

  1. 1. Sablik M.J. and Jiles D.C., Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis, IEEE Trans. Magn. 29 (1993) 2113-2123.10.1109/20.221036
  2. 2. Sablik M,J., Rios S., Landgraf F.J.G., et al., Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation, J. Appl. Phys. 97 (2005) 10E518-1 – 10E518-3.10.1063/1.1856191
  3. 3. Sablik M.J., Landgraf F.J.G., Modeling microstructural effects on hysteresis loops with the same maximum flux density, IEEE Trans. Magn. 39 (2003) 2528-2530.10.1109/TMAG.2003.816466
  4. 4. Sablik M.J., Landgraf F.J.G., Magnabosco R., Fukuhara M., de Campos M.F., Machado R. Missell F.P., Fitting the flow curve of a plastically deformed silicon steel for the prediction of magnetic properties, J. Magn. Magn. Mater. 304 (2006) 155-158.10.1016/j.jmmm.2006.02.118
  5. 5. Sablik M.J., Yonamine T., Landgraf F.J.G., Modeling plastic deformation effects on hysteresis loops with the same maximum flux density in steels, IEEE Trans. Mag. 40 (2004) 3219-3226.10.1109/TMAG.2004.832763
  6. 6. Szewczyk R., Salach J., Bieńkowski A., Modeling of magnetoelastic materials for force and torque sensors, Solid State Phenom. 144 (2009) 124-129.10.4028/www.scientific.net/SSP.144.124
  7. 7. Li J., Xu M., Modified Jiles-Atherton-Sablik model for asymmetry in magnetomechanical effect under tensile and compressive stress, J. Appl. Phys. 110(6) (2011) 063918.10.1063/1.3638711
  8. 8. Zirka S. E., Moroz Y. I., Harrison R. G., Chwastek K., On physical aspects of the Jiles-Atherton hysteresis models, J. Appl. Phys. 112(4) (2012) 043916.10.1063/1.4747915
  9. 9. Nowicki M., Szewczyk R., Charubin T., Marusenkov A., Nosenko A., Kyrylchuk V., Modeling the hysteresis loop of ultra-high permeability amorphous alloy for space applications, Materials, 11(11) (2018) 2079.10.3390/ma11112079626654430355967
  10. 10. Jakubas A., Chwastek K., A Simplified Sablik’s Approach to model the effect of compaction pressure on the shape of hysteresis loops in soft magnetic composite cores, Materials, 13(1) 2020, 170.10.3390/ma13010170698187231906352
  11. 11. Landgraf F. J. G., Emura M. Losses and permeability improvement by stress relieving fully processed electrical steels with previous small deformations, J. Magn. Magn. Mater. 242 (2002) 152-156.10.1016/S0304-8853(01)01184-2
  12. 12. Chady T., Grochowalski J. M. Eddy current transducer with rotating permanent magnets to test planar conducting plates, Sensors, 19(6) (2019) 1408.10.3390/s19061408647146030909384
  13. 13. Kronmuller H., Magnetic techniques for the study of dislocations in ferromagnetic materials, Int. J. Nondestruct. Testing, 3 (1972) 314-321.
  14. 14. Astie B., Degauque J. et al., Influence of the dislocation structures on the magnetic and magnetomechanical properties of high-purity iron, IEEE Trans. Magn. 17 (1981) 2929-2931.10.1109/TMAG.1981.1061496
DOI: https://doi.org/10.2478/adms-2020-0006 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 5 - 13
Published on: Jun 12, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 M.J. Sablik, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.