Have a personal or library account? Click to login
Achievements in Micromagnetic Techniques of Steel Plastic Stage Evaluation Cover

Achievements in Micromagnetic Techniques of Steel Plastic Stage Evaluation

By: M. F. de Campos  
Open Access
|Apr 2020

References

  1. 1. Hosford W.F.: Fundamentals of Engineering Plasticity. Cambridge University Press, New York, USA, 2013.10.1017/CBO9781139775373
  2. 2. Kurti N.: Selected Works of Louis Neel. 1st Edition, CRC Press, Boca Raton, USA, 1988.
  3. 3. Stoner E. C.: Ferromagnetism: magnetization curves. Rep. Prog. Phys. 13 (1950) 83-183.10.1088/0034-4885/13/1/304
  4. 4. Kittel C.: Physical Theory of Ferromagnetic Domains. Rev. Mod. Phys. 21 (1949) 541-583.10.1103/RevModPhys.21.541
  5. 5. Stewart K. H.: Ferromagnetic Domains, Cambridge University Press, New York, USA, 1954.10.1063/1.3061400
  6. 6. Chikazumi S.:. Physics of Magnetism. Willey, New York. 1964.
  7. 7. Chen C.W. Magnetism and Metallurgy of Soft Magnetic Materials. North Holland, Amsterdam, 1977.10.1016/B978-0-7204-0706-8.50012-5
  8. 8. Heidenreich R.D., Shockley W.: Electron Microscope and Electron-Diffraction Study of Slip in Metal Crystals. Journal of Applied Physics 18 (1947) 1029-1031.10.1063/1.1697576
  9. 9. Williams H. J., Bozorth R. M., Shockley W.: Magnetic Domain Patterns on Single Crystals of Silicon Iron. Phys. Rev. 75 (1949) 155-178.10.1103/PhysRev.75.155
  10. 10. da Silva Júnior A.F., de Campos M. F., Martins A.S.: Domain Wall Structure in Metals: a New Approach to an Old Problem. Journal of Magnetism and Magnetic Materials, 442 (2017) 236-241.10.1016/j.jmmm.2017.06.134
  11. 11. Bloch, F.: Zur Theorie der Austauschproblems und der Remanenzerscheinung der Feromagnetika. Z. Phys. 74 (1932) 295-335.10.1007/978-3-662-41138-4_1
  12. 12. Moriya T., Takahashi Y.: Itinerant Electron Magnetism. Ann. Rev. Mater. Sci. 14 (1984) 1-25.10.1146/annurev.ms.14.080184.000245
  13. 13. Shull, R. D.: Clifford Glenwood Shull 1915-2001. A Biographical Memoir. Available at: http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/shull-clifford.pdf
  14. 14. Stearns, M. B.: On the Origin of Ferromagnetism in Fe, Co, and Ni. 1990. Available at: http://garfield.library.upenn.edu/classics1990/A1990DV41200001.pdf
  15. 15. Aharoni, A.: Exchange energy near singular points or lines. Journal of Applied Physics 51 (1980) 3330-3332.10.1063/1.328042
  16. 16. Aharoni, A.: lntroduction to the Theory of Ferromagnetism. Second Edition. Oxford University press, Oxford, 1996, (reprinted 2007). p. 137.
  17. 17. Brown Jr W. F.: Domains, micromagnetics, and beyond: Reminiscences and assessments. Journal of Applied Physics 49, (1978) 1937-1942.10.1063/1.324811
  18. 18. Chang C.R., Lee C.M., Yang J.S.: Magnetization curling reversal for an infinite hollow cylinder. Physical Review B 50 (1994) 6461-6464.10.1103/PhysRevB.50.6461
  19. 19. da Silva Jr A. F., Martins A.S., de Campos M. F.: The Exchange Energy Term and the Curling Reversal Mode in Hard Magnetic Materials Manufactured by Powder Metallurgy. Materials Science Forum 899 (2017) 549-553.10.4028/www.scientific.net/MSF.899.549
  20. 20. de Campos M. F.: Virtues and Weakness of Brown Micromagnetics. Materials Science Forum 802 (2014) 613-618.10.4028/www.scientific.net/MSF.802.613
  21. 21. Kondorsky E.I.: On the stability of certain magnetic modes in fine ferromagnetic particles. IEEE Trans. Magn. 15 (1979) 1209-1214.10.1109/TMAG.1979.1060340
  22. 22. Shtrikman S., Treves D.: The coercive force and rotational hysteresis of elongated ferromagnetic particles. J. Phys. Radium, 20 (2-3), (1959) 286-289.10.1051/jphysrad:01959002002-3028600
  23. 23. Cullity B. D., Graham C. D.: Introduction to Magnetic Materials, 2nd edition, Willey – IEEE Press, Piscataway, USA, 2008.10.1002/9780470386323
  24. 24. Lilley, B.A.: Energies and widths of domain boundaries in ferromagnetics. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41 (1950) 792–813.10.1080/14786445008561011
  25. 25. Kvashnin Y. O., Cardias R., Szilva A., Di Marco I., Katsnelson M. I., Lichtenstein A. I., Nordström L., Klautau A. B., Eriksson O.: Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe Phys. Rev. Lett. 116 (2016) 217202.10.1103/PhysRevLett.116.217202
  26. 26. Pajda, M., Kudrnovský, J., Turek, I., Drchal, V., Bruno, P.: Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni. Phys. Rev. B64 (2001) 174402.10.1103/PhysRevB.64.174402
  27. 27. Turek I., Kudrnovský J., Drchal V., Bruno P.: Exchange interactions, spin waves, and transition temperatures in itinerant magnets. Philosophical Magazine 86 (2006) 1713-1752.10.1080/14786430500504048
  28. 28. Gilbert, T. L.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Mag. 40 (2004) 3443–3449.10.1109/TMAG.2004.836740
  29. 29. Sun Z. Z., Wang X. R.: Fast magnetization switching of Stoner particles: A nonlinear dynamics picture. Phys. Rev. B 71 (2005) 174430.10.1103/PhysRevB.71.174430
  30. 30. Zhu B., Lo C. C. H., Lee S. J., Jiles D. C.: Micromagnetic modeling of the effects of stress on magnetic properties. J. Appl. Phys. 89 (2001) 7009-7011.10.1063/1.1363604
  31. 31. Landau, L.D., Lifshitz, E.M.: On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. Phys. Z. Sowjetunion, 8 (1935) 153-164.
  32. 32. Manchon A., Zhang S.: Spin Torque Effects in Magnetic Systems: Theory. in E. Y. Tsymbal, I. Zutic (eds.) - Handbook of spin transport and magnetism. CRC, Boca Raton, USA, 2012, pp. 157-178.
  33. 33. Slonczewski J. C.: Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater., 159 (1996) L1–L7.10.1016/0304-8853(96)00062-5
  34. 34. Hurst J., Hervieux P.A., Manfredi G.: Spin current generation by ultrafast laser pulses in ferromagnetic nickel films. Physical Review B 97 (2018) 01442410.1103/PhysRevB.97.014424
  35. 35. Manfredi G., Hurst J., Hervieux P.A.: Ultrafast spin current generation in ferromagnetic thin films. San Diego, California, USA (2018).10.1117/12.2319953
  36. 36. Campbell I. A.: Frustrated Itinerant Magnetism. Brazilian Journal of Physics 25 (1995) 295-301.
  37. 37. Hathaway K.B.: Theory of Exchange Coupling in Magnetic Multilayers. in:G.A. Prinz, Bretislav Heinrich, J. Anthony C. Bland (Eds.) - Ultrathin Magnetic Structures II Measurement Techniques and Novel Magnetic Properties. Springer Berlin Heidelberg, 2005, pp. 45-194.
  38. 38. de Campos M.F., Campos M. A., Landgraf F. J. G., Padovese L. R.: Anisotropy study of grain oriented steels with Magnetic Barkhausen Noise. J. Phys. Conf. Ser. 303 (2011) 012020.10.1088/1742-6596/303/1/012020
  39. 39. Leuning N., Steentjes S., Stöcker A., Kawalla R., Wei X., Dierdorf J., Hirt G., Roggenbuck S., Korte-Kerzel S., Weiss H.A., Volk W., Hameyer K.: Impact of the interaction of material production and mechanical processing on the magnetic properties of non-oriented electrical steel. AIP Advances 8 (2018) 04760110.1063/1.4994143
  40. 40. Najgebauer M.: Scaling-based prediction of magnetic anisotropy in grain-oriented steels, Archives of Electrical Engineering 66 (2017) 423-432.10.1515/aee-2017-0032
  41. 41. Bunge, H.-J. The basic concepts of texture investigation in polycrystalline materials. Steel Res. 62 (1991) 530-541.10.1002/srin.199100447
  42. 42. de Campos, M. F.: Anisotropy of Steel Sheets and Consequence for Epstein Test: I Theory. in XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development September, 17 – 22, 2006, Rio de Janeiro, Brazil.
  43. 43. de Campos M. F., Landgraf F. J. G.: Anisotropy of Steel Sheets and Consequence for Epstein Test: II Experiment” in XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development, September, 17 – 22, 2006, Rio de Janeiro, Brazil.
  44. 44. Landgraf F.J.G., Yonamine T., Emura M., Cunha M.A.: Modelling the angular dependence of magnetic properties of afully processed non-oriented electrical steel. J. Magn. Magn. Mat. 254–255 (2003) 328–330.10.1016/S0304-8853(02)00827-2
  45. 45. de Campos M. F., Tschiptschin A. P., Landgraf F. J. G.. A method to estimate magnetic induction from texture in non-oriented electrical steels. J. Magn. Magn. Mat. 226 (2001) 1536-1538.10.1016/S0304-8853(01)00027-0
  46. 46. Hothersall D.C.: The investigation of domain walls in thin sections of iron by the electron interference method. Phil. Mag. 20 (1969) 89–112.10.1080/14786436908228538
  47. 47. de Campos M. F.: A General Coercivity Model for Soft Magnetic Materials. Materials Science Forum 727-728 (2012) 157-16210.4028/www.scientific.net/MSF.727-728.157
  48. 48. Guyot M., Globus A.: Determination of domain wall energy and the exchange constant from hysteresis in ferromagnetic polycrystals. J. Physique Colloque C1, 38 (1977) pp. C1-157– C1-162, supplement10.1051/jphyscol:1977131
  49. 49. de Campos M.F., de Castro, J.A.: An Overview on Nucleation Theories and Models. Journal of Rare Earths 37 (2019) 1015-1022.10.1016/j.jre.2019.02.002
  50. 50. Soboyejo W.: Mechanical Properties of Engineered Materials. Marcel Dekker, New York, 2003.10.1201/9780203910399
  51. 51. Ferguson J. B., Schultz B.F., Venugopalan D., Lopez H.F., Rohatgi P.K., Cho K., Kim C.S.. On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: Considerations of stress and energy. Met. Mater. Int. 20 (2014) 375-388.10.1007/s12540-014-2017-6
  52. 52. Chauhan A., Bergner F., Etienne A., Aktaa J., de Carlan Y., Heintze C., Litvinov D., Hernandez-Mayoral M., Onorbe E., Radiguet B., Ulbricht A.. Microstructure characterization and strengthening mechanisms ofoxide dispersion strengthened (ODS) Fe-9%Cr and Fe-14%Cr extruded bars. Journal of Nuclear Materials 495 (2017) 6-19.10.1016/j.jnucmat.2017.07.060
  53. 53. de Campos M. F.: Coercivity Mechanism in Hard and Soft Sintered Magnetic Materials. Materials Science Forum 802 (2014) 563-568.10.4028/www.scientific.net/MSF.802.563
  54. 54. Vourna P., Hristoforou E., Ktena A., Svec P., Mangiorou E.: Dependence of Magnetic Permeability on Residual Stresses in Welded Steels. IEEE Transactions on Magnetics 53 (2017) 6200704.10.1109/TMAG.2016.2628025
  55. 55. Hristoforou E., Ktena A., Vourna P., Mangiorou E., Aggelopoulos S., Svec P., Hervoches C.: State of the Art on Magnetic Properties – Stress Correlation in Steels. In: 19th World Conference on Non-Destructive Testing 2016.
  56. 56. de Campos M.F., de Castro J.A.: Predicting Recoil Curves in Stoner–Wohlfarth Anisotropic Magnets. Acta Physica Polonica A 136 (2019) 737-739.10.12693/APhysPolA.136.737
  57. 57. de Campos M. F., Castro J. A.: Calculation of Recoil Curves in Isotropic and Anisotropic Stoner–Wohlfarth Materials. IEEE Transactions on Magnetics 56 (2020) 7512304.10.1109/TMAG.2019.2957147
  58. 58. de Campos M. F., Emura M., Landgraf F.J.G.. Consequences of magnetic aging for iron losses in electrical steels. Journal of Magnetism and Magnetic Materials 304 (2006) e593– e59510.1016/j.jmmm.2006.02.185
  59. 59. Costa L.F.T., Gerhardt G.J.L., Missell F.P., de Campos M.F.: Interpretation of Magnetic Barkhausen Noise Bursts in Low Frequency Measurements. Acta Physica Polonica A 136 (2019) 740-744.10.12693/APhysPolA.136.740
  60. 60. Costa L.F.T., de Campos M.F., Gerhardt G.J.L., Missell F.P.: Hysteresis and Magnetic Barkhausen Noise for SAE 1020 and 1045 Steels With Different Microstructures. IEEE Transactions on Magnetics 50 (2014) 2001504.10.1109/TMAG.2013.2287701
  61. 61. Hosford W. F.: Physical Metallurgy, Second Edition. CRC Press, Boca Raton, 2010.
  62. 62. Gao Y., Tian G.Y., Qiu F., Wang P., Ren W., Gao B.: Investigation of Magnetic Barkhausen Noise and Dynamic Domain Wall Behavior for Stress Measurement. In: 19th World Conference on Non-Destructive Testing 2016.
  63. 63. Augustyniak B., Sablik M. J., Landgraf F.J.G., Jiles D.C., Chmielewski M., Piotrowski L., Moses A..J.: Lack of magnetoacoustic emission in iron with 6.5% silicon. Journal of Magnetism and Magnetic Materials 320 (2008), 2530-2533.10.1016/j.jmmm.2008.04.109
  64. 64. Piotrowski L., Augustyniak B., Chmielewski M., Kowalewsk Z.: Possibility of Application of Magnetoacoustic Emission for the Assessment of Plastic Deformation Level in Ferrous Materials. IEEE Transactions on Magnetics 47 (2011) 2087-2092.10.1109/TMAG.2011.2121086
  65. 65. Piotrowski L., Chmielewski M., Augustyniak B.: On the correlation between magnetoacoustic emission and magnetostriction dependence on the applied magnetic field. Journal of Magnetism and Magnetic Materials 410 (2016) 34–40.10.1016/j.jmmm.2016.03.018
  66. 66. Williams H. J., Shockley W., Kittel C.: Studies of the Propagation Velocity of a Ferromagnetic Domain Boundary Phys. Rev. 80 (1950) 1090-1094.10.1103/PhysRev.80.1090
  67. 67. Pry R. H., Bean C. P.: Calculation of the Energy Loss in Magnetic Sheet Materials Using a Domain Model. J. Appl. Phys. 29 (1958) 532-533.10.1063/1.1723212
  68. 68. Franco F.A., González M.F.R., de Campos M.F., Padovese L.R.: Relation between magnetic Barkhausen noise and hardness for Jominy quench tests in SAE 4140 and 6150 steels. Journal of Nondestructive Evaluation 32 (2013) 93-103.10.1007/s10921-012-0162-8
  69. 69. de Campos M. F., de Castro J. A.: The Critical Volume for Nucleation. Materials Science Forum 660-661 (2010) 279-283.10.4028/www.scientific.net/MSF.660-661.279
  70. 70. Belanger A., Narayanan R.: Calculation of Hardness Using High and Low Magnetic Fields. in ECNDT 2006 - Tu.4.1.1.
  71. 71. de Campos M. F., da Silva, F.A.S.; de Castro J.A.: Stoner-Wohlfarth Model for Nanocrystalline Anisotropic Sm2Co17 Magnets. Materials Science Forum 775-776 (2014) 431-436.10.4028/www.scientific.net/MSF.775-776.431
  72. 72. Nicolis G., Prigogine I.: Self-organization in nonequilibrium systems. John Wiley & Sons, New York, USA, 1977.
  73. 73. Brown L M.: Linear Work-Hardening and Secondary Slip in Crystals. In. Frank R.N. Nabarro,M.S. Duesbery (Eds.) Dislocations in Solids, Volume 11, Chapter 58, North-Holland, Amsterdam, 2002.10.1016/S1572-4859(02)80009-2
  74. 74. Haller T.R., Kramer J.J.: Observation of Dynamic Domain Size Variation in a Silicon-Iron Alloy J. Appl. Phys. 41 (1970) 1034-1035.10.1063/1.1658804
  75. 75. de Campos M. F.: Loss Separation Model: A Tool for Improvement of Soft Magnetic Materials. Materials Science Forum 869 (2016) 596-601.10.4028/www.scientific.net/MSF.869.596
  76. 76. Rodrigues-Jr D.L., Silveira J.R.F., Gerhardt G.J.L., Missell F.P., Landgraf, F.J.G., Machado R., de Campos M.F.: Effect of plastic deformation on the excess loss of electrical steel. IEEE Transactions on Magnetics 48 (2012) 1425-1428.10.1109/TMAG.2011.2174214
  77. 77. Beckley, P. Thompson J.E.. Influence of inclusions on domain-wall motion and power loss in oriented electrical steel. PROC. IEE, 117 (1970) 2194-2200.10.1049/piee.1970.0401
  78. 78. Trindade M.A., de Campos, M.F. Landgraf, F.J.G., Lima, N.N. Almeida, A. Influence of Thickness on Magnetic and Microstructural Properties in Electrical Steels Semi-Processed of Low Efficiency. Materials Science Forum 930 (2018) 466-471.10.4028/www.scientific.net/MSF.930.466
  79. 79. de Campos M F.: Optimized Materials for Wind Turbines and Electric Motors. in 2018-Sustainable Industrial Processing Summit vol 8, (2018) pp. 51-58.
  80. 80. de Campos M.F.: Interpretation of Loss Separation with the Haller–Kramer Model. Acta Physica Polonica A 136 (2019) 705-708.10.12693/APhysPolA.136.705
  81. 81. Petryshynets I., Ková F., Petrov B., Falat L. Puchý V.: Improving the Magnetic Properties of Non-Oriented Electrical Steels by Secondary Recrystallization Using Dynamic Heating Conditions. Materials 12 (2019) 1914.10.3390/ma12121914
  82. 82. de Campos M.F.: Methods for texture improvement in electrical steels. Przegląd Elektrotechniczny, 95 (2019) 7-11.10.15199/48.2019.07.02
  83. 83. Niku-Lari A.: Advances in Surface Treatments - Residual Stresses. Technology, Applications, Effects. Elsevier Ltd, Pergamon Press, Oxford, UK, 1987.10.1016/B978-0-08-034062-3.50005-7
  84. 84. Macherauch. E.: Introduction to Residual Stress. In A. Niku-Lari (ed) Advances in Surface Treatments, vol. IV. Elsevier Ltd, Pergamon Press, Oxford, UK, 1987.
  85. 85. Totten G., Howes M., Inoue T.: Handbook of Residual Stress and Deformation of Steel (2001). ASM, Materials Park, Ohio, USA, 2002.
  86. 86. Knott J. F., Sih G. C., Sommer E., Dahl W.: Application of Fracture Mechanics to Materials and Structures: Proceedings of the International Conference on Application of Fracture Mechanics to Materials and Structures, held at the Hotel Kolpinghaus, Freiburg, F.R.G., June 20–24, 1983. Springer Netherlands, 1984.
  87. 87. Hauk V.: Structural and Residual Stress Analysis by Nondestructive Methods Evaluation - Application – Assessment, Elsevier, Amsterdam 1997.
  88. 88. Volterra V.: Sur l’équilibre des corps élastiques multiplement connexes. Annales scientifiques de l’É.N.S. 3e série, tome 24 (1907) 401-517.10.24033/asens.583
  89. 89. Read Jr, W. T.: Dislocations in Crystals. McGraw-Hill, New York, USA, 1953.
  90. 90. Hull D., Bacon D. J.: Introduction to Dislocations. 5nd Edition, Elsevier, Amsterdam, 2011.10.1016/B978-0-08-096672-4.00003-7
  91. 91. Stibitz G.R.: Energy of lattice distortion. Phys. Rev. 49 (1936) 862.
  92. 92. Zhao G.-H., Liang X.Z., Kim B., Rivera-Díaz-del-Castillo P.E.J.: Modelling strengthening mechanisms in beta-type Ti alloys. Materials Science and Engineering: A 756 (2019) 156-16010.1016/j.msea.2019.04.027
  93. 93. Capó Sánchez J., de Campos M.F., Padovese L.R.: Magnetic Barkhausen emission in lightly deformed AISI 1070 steel. Journal of Magnetism and Magnetic Materials 324 (2012) 11-14.10.1016/j.jmmm.2011.07.014
  94. 94. Gerstein G., Klusemann B., Bargmann S., Schaper, M.: Characterization of the Microstructure Evolution in IF-Steel and AA6016 during Plane-Strain Tension and Simple Shear. Materials 8 (2015) 285–301.10.3390/ma8010285
  95. 95. de Campos M.F., Sablik M.J., Landgraf F.J.G., Hirsch T.K., Machado R., Magnabosco R., Gutierrez C.J., Bandyopadhyay A.: Effect of rolling on the residual stresses and magnetic properties of a 0.5% Si electrical steel. Journal of Magnetism and Magnetic Materials. 320 (2008) e377-e38010.1016/j.jmmm.2008.02.104
  96. 96. Callister W.D., Rethwisch D.G.: Materials science and engineering an introduction, 8th Edition, John Wiley, New York, USA, 2009.
  97. 97. Na S.H., Seol J.B., Jafari M., Park C.G.: A Correlative Approach for Identifying Complex Phases by Electron Backscatter Diffraction and Transmission Electron Microscopy. Applied Microscopy 47 (2017) 43-49.10.9729/AM.2017.47.1.43
  98. 98. Moussa C., Bernacki M., Besnard R., Bozzolo N.: Statistical analysis of dislocations and dislocation boundaries from EBSD data. Ultramicroscopy. 179 (2017) 63-72.10.1016/j.ultramic.2017.04.005
  99. 99. Kalácska S., Groma I., Borbély A., Ispánovity P.D.: Comparison of the dislocation density obtained by HR-EBSD and X-ray profile analysis. Appl. Phys. Lett. 110 (2017) 09191210.1063/1.4977569
  100. 100. Adams B.L., Kacher J.: EBSD-Based Microscopy: Resolution of Dislocation Density. CMC - Computers, Materials & Continua 14 (2009) 185-196.
  101. 101. de Campos M.F., da Silva F.R.F., Lins J.F.C., Monlevade E.F., Alberteris Campos M., Perez-Benitez J., Goldenstein H., Padovese L.R..: Comparison of the Magnetic Barkhausen Noise for Low Carbon Steel in Deformed and Annealed Conditions.. IEEE Transactions on Magnetics 49 (2013) 1305-1309.10.1109/TMAG.2012.2231871
  102. 102. Oding I. A., Zubarev P. V., Fridman Z. G.: Polygonization in metals. Metal Science and Heat Treatment of Metals. 3 (1961) 1–5.10.1007/BF00815231
  103. 103. Hazra S.S., Gazder A.A., Pereloma E.V.: Stored energy of a severely deformed interstitial free steel. Materials Science and Engineering A 524 (2009) 158–167.10.1016/j.msea.2009.06.033
  104. 104. Ossart F., Hug E., Hubert O., Buvat C., Billardon R.: Effect of punching on electrical steels: Experimental and numerical coupled analysis. IEEE Transactions on Magnetics 36 (2000) 3137-3140.10.1109/20.908712
  105. 105. Weiss H.A., Leuning N., Steentjes S., Hameyer K., Andorfer T., Jenner S, Volk W.: Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets. Journal of Magnetism and Magnetic Materials 421 (2017) 250-259.10.1016/j.jmmm.2016.08.002
  106. 106. Steentjes S., Franck D., Hameyer K., Vogt S., Bednarz M., Volk W., Dierdorf J., Hirt G., Schnabel V., Mathur H. N., Korte-Kerzel S.: On the Effect of Material Processing: Microstructural and Magnetic Properties of Electrical Steel Sheets in: 2014 4th International Electric Drives Production Conference (EDPC). INSPEC Accession Number: 14833374. DOI: 10.1109/EDPC.2014.698443610.1109/EDPC.2014.6984436
  107. 107. De Keijser Th. H., Langford J. I., Mittemeijer E. J., Vogels A. B. P.: Use of the Voigt Function in a Single-Line Method for the Analysis of X-ray Diffraction Line Broadening. J. Appl. Cryst. 15 (1982) 308-31410.1107/S0021889882012035
  108. 108. Ungár T.: Strain Broadening Caused by Dislocations. Materials Science Forum, 278-281 (1998) 151-157.10.4028/www.scientific.net/MSF.278-281.151
  109. 109. Murasawa K., Takamura M., Kumagai M., Ikeda Y., Suzuki H., Otake Y., Hama T., Suzuki S.: Determination Approach of Dislocation Density and Crystallite Size Using a Convolutional Multiple Whole Profile Software. Materials Transactions 59 (2018) 1135 to 1141.10.2320/matertrans.M2017380
  110. 110. Ungár T.: Dislocation model of strain anisotropy. Powder Diffraction 23 (2008) 125-132.10.1154/1.2918549
  111. 111. Kerber, M.B., Zehetbauer, M.J., Schafler, E., Spieckermann F. C., Bernstorff S., Ungar T.: JOM 63 (2011) 61-70.10.1007/s11837-011-0115-1
  112. 112. de Campos M.F., Loureiro S.A., Rodrigues D., Silva M.C.A., Lima, N.B.: Estimative of the Stacking Fault Energy for a FeNi(50/50) Alloy and a 316L Stainless Steel. Materials Science Forum 591-593 (2008) 3-7.10.4028/www.scientific.net/MSF.591-593.3
  113. 113. de Campos M. F.: Selected Values for the Stacking Fault Energy of Face Centered Cubic Metals. Materials Science Forum 591-593(2008) 708-711.10.4028/www.scientific.net/MSF.591-593.708
  114. 114. Taylor G. I., Elam C. F.: The distortion of iron crystals. Proceedings of the Royal Society A 112 (1926) 337-361.10.1098/rspa.1926.0116
  115. 115. Zappa K.: Constance Tipper Cracks the Case of the Liberty Ships. JOM 67 (2015) 2774-2776.10.1007/s11837-015-1697-9
  116. 116. You S., Huang Y., Kainer K.U., Hort N.: Recent research and developments on wrought magnesium alloys Journal of Magnesium and Alloys 5 (2017) 239-253.10.1016/j.jma.2017.09.001
  117. 117. Poerschke D.: The Effects of forging on the microstructure and tensile properties of magnesium alloys AZ31 and ZK60. Case Western Reserve University, Cleveland, OH, USA; 2009.
  118. 118. Mezger, H.: The Development of the Porsche Type 917 Car. Proceedings of the Institution of Mechanical Engineers, 186 (1972) 11–28.10.1243/PIME_PROC_1972_186_005_02
  119. 119. Kalpakjian S., Schmid S. R.: Manufacturing Engineering and Technology. Seventh Edition. 2014. Pearson. Prentice Hall, Upper Saddle River, New Jersey, USA. p. 325.
  120. 120. Shimotomai M.: Study of Carbon Steel by Mechanical Spectroscopy beyond the Old Limitations. Res Rep Metals 1 (2017) 1000107.
  121. 121. Hug E.: Evolution of the magnetic domain structure of oriented 3% SiFe sheets with plastic strains. J. Mater. Sci. 30 (1995) 4417–4424.10.1007/BF00361526
  122. 122. Perevertov O., Thielsch J., Schäfer R.: Effect of applied tensile stress on the hysteresis curve and magnetic domain structure of grain-oriented transverse Fe-3%Si steel. Journal of Magnetism and Magnetic Materials 385 (2015) 358–367.10.1016/j.jmmm.2015.03.040
  123. 123. Naumoski H., Riedmüller B., Minkow A., Herr U.: Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel. Journal of Magnetism and Magnetic Materials 392 (2015) 126–133.10.1016/j.jmmm.2015.05.031
  124. 124. Nakamura M., Hirose K., Nozawa T., Matsuo M.: Domain refinement of grain oriented silicon steel by laser irradiation. IEEE Transactions on Magnetics 23 (1987) 3074 – 3076.10.1109/TMAG.1987.1065748
  125. 125. Sablik M. J.: A model for asymmetry in magnetic property behavior under tensile and compressive stress in steel. IEEE Transactions on Magnetics 33 (1997) 3958 – 396010.1109/20.619628
  126. 126. Sablik M. J., Jiles D. C.: Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Transactions on Magnetics 29 (1993) 2113 – 2123.10.1109/20.221036
  127. 127. Sablik M. J., Rios S., Landgraf F. J. G., Yonamine T., de Campos M. F.: Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation Journal of Applied Physics 97 (2005) 10E518.10.1063/1.1856191
  128. 128. Correa S.R., de Campos M.F., Marcelo C.J., de Castro J.A., Fonseca M.C., Chuvas T.C., Campos M.A., Padovese L.R.: Evaluation of Residual Stresses in Welded ASTM A36 Structural Steel by Metal Active Gas (MAG) Welding Process. Materials Science Forum 869 (2016) 567-571.10.4028/www.scientific.net/MSF.869.567
  129. 129. Correa S.R., de Campos M.F., Marcelo C.J., de Castro J.A., Fonseca M.C., Chuvas T.C., Campos M.A., Padovese L.R.: Characterization of Residual Stresses and Microstructural by Technique of Magnetic Barkhausen Noise of API 5L X80 Steel Heat Treatment. Materials Science Forum 869 (2016) 556-561.10.4028/www.scientific.net/MSF.869.556
  130. 130. de Campos M. F., Damasceno J. C., Machado R., Achete C. A.: Uncertainty Estimation of Lattice Parameters Measured By X-Ray Diffraction. In XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development September, 17 – 22, 2006, Rio de Janeiro, Brazil.
  131. 131. Eigenmann B., Macherauch E.: Histoire et état actuel de l’analyse des contraintes par rayons X. Journal de Physique IV Colloque, 06 (C4), (1996) pp.C4-151-C4-185.10.1051/jp4:1996416
  132. 132. Guillen R., François M., Bourniquel B., Girard E.: Texture and residual-stress analysis using a kappa goniometer. J. Appl. Cryst. 32 (1999) 393-396.10.1107/S0021889898015064
DOI: https://doi.org/10.2478/adms-2020-0002 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 16 - 55
Published on: Apr 13, 2020
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 M. F. de Campos, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.