References
- 1. Cruz V., Chao Q., Birbilis N., Fabijanic D., Hodgson P. D., & Thomas S.: Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting. Corrosion Science, 164 (2020), 108314.10.1016/j.corsci.2019.108314
- 2. Larimian T., Kannan M., Grzesiak D., AlMangour B., & Borkar T.: Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Materials Science and Engineering: A, (2020), 770, 138455.
- 3. Simmons J. C., Chen X., Azizi A., Daeumer M. A., Zavalij P. Y., Zhou G., & Schiffres S. N.: Influence of processing and microstructure on the local and bulk thermal conductivity of selective laser melted 316L stainless steel. Additive Manufacturing, 32 (2020), 100996.10.1016/j.addma.2019.100996
- 4. Karapatis P. A.: Sub-process approach of selective laser sintering. PhD thesis, Ecole Polytechnique federal de Lausanne, (2002).
- 5. Meiners W.: Direktes Selektives Laser Sintern einkomponentiger metallisher Werkstoffe. PhD thesis, Rheinisch-Westfaelische Technische Hochschule Aachen, (1999).
- 6. Ni X., Kong D., Wu W., Zhang L., Dong C., He B., Zhu D.: Corrosion behavior of 316L stainless steel fabricated by selective laser melting under different scanning speeds. Journal of Materials Engineering and Performance, 27(7), (2018), 3667-3677.10.1007/s11665-018-3446-z
- 7. Arrizubieta J. I., Ukar O., Ostolaza M., & Mugica A.: Study of the environmental implications of using metal powder in additive manufacturing and its handling. Metals, 10(2), (2020), 261.10.3390/met10020261
- 8. Slowntiski J. A., Garboczsi E. J.: Metrology needs for metal additive manufacturing powders. JOM, 67(3), (2015), 538-543.10.1007/s11837-014-1290-7
- 9. ISO/ASTM 52900:2015. Additive manufacturing - General principles - Terminology.
- 10. Pinto F. C., Souza Filho I. R., Sandim M. J. R., & Sandim H. R. Z.: Defects in parts manufactured by selective laser melting caused by δ-ferrite in reused 316L steel powder feedstock. Additive Manufacturing, 31, (2020), 100979.10.1016/j.addma.2019.100979
- 11. SS 316L - 047: Powder for additive manufacturing. RENISHAW: apply innovation. United Kingdom: Renishaw, (2015).
- 12. Zhong C., Biermann T., Gasser A., Poprawe, G.: Experimental study of effects of main process parameters on porosity, track geometry, deposition rate, and powder efficiency for high deposition rate laser metal deposition. Journal of Laser Applications, (2015), 27(4), 042003-1-042003-8.
- 13. Markusson L.: Powder Characterization for Additive Manufacturing Processes. Master thesis. Luleå University of Technology, (2017).
- 14. Hajnys J.: Research into the effect of finishing operations on modification of utility properties of components produced by additive. PhD thesis. VSB - Technical University of Ostrava, Faculty of Mechanical Engineering, (2019).
- 15. Shi W., Wang P., Liu Y., Hou Y., & Han G. : Properties of 316L formed by a 400 W power laser Selective Laser Melting with 250 μm layer thickness. Powder Technology, 360, (2020), 151-164.10.1016/j.powtec.2019.09.059
- 16. Dursun G., Ibekwe S., Li G., Mensah P., Joshi G., & Jerro D.: Influence of laser processing parameters on the surface characteristics of 316L stainless steel manufactured by selective laser melting. Materials Today: Proceedings, (2020) (in press).10.1016/j.matpr.2019.12.061
- 17. Oh W. J., Lee W. J., Kim M. S., Jeon J. B., & Shim D. S.: Repairing additive-manufactured 316L stainless steel using direct energy deposition. Optics & Laser Technology, 117, (2019), 6-17.10.1016/j.optlastec.2019.04.012