Have a personal or library account? Click to login
Impact Tests of UHSS Steel Welded Joints Using the Drop - Tower Impact Drop Method Cover

Impact Tests of UHSS Steel Welded Joints Using the Drop - Tower Impact Drop Method

By: J. Dorożyński,  J. Nowacki and  A. Sajek  
Open Access
|Oct 2019

References

  1. 1. Górka J. and Stano S., Microstructure and properties of hybrid laser arc welded joints (laser beam-MAG) in thermo-mechanical control processed S700MC Steel, Metals, 8(2), (2018) 132.10.3390/met8020132
  2. 2. Pańcikiewicz K., Zielińska-Lipiec A., Tasak E., Cracking of high-strength steel welded joints Adv. Mater. Sci., 13(3), (2013), 76–8510.2478/adms-2013-0013
  3. 3. Tuz L., Evaluation of microstructure and selected mechanical properties of laser beam welded S690QL high-strength steel, Adv. Mater. Sci., 18(3), (2018), 34–42.10.1515/adms-2017-0039
  4. 4. Tuz L., Sulikowski K., Ocena możliwości spawania stali wysokowytrzymałych ulepszanych cieplnie, Przegląd Spaw. - Weld. Technol. Rev., 90(4), (2018), 9–13.10.26628/ps.v90i4.873
  5. 5. Winczek J., Gawrońska E., Gucwa M., Sczygiol N., Theoretical and experimental investigation of temperature and phase transformation during SAW overlaying, Appl. Sci., 9(7), (2019), 1–17.10.3390/app9071472
  6. 6. Hebert M., Rousseau C. E., Shukla A., Shock loading and drop weight impact response of glass reinforced polymer composites, Compos. Struct., 84(3), (2008), 199–208.10.1016/j.compstruct.2007.07.002
  7. 7. ASTM D7136/D7136M - 12, Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event, (2005).
  8. 8. Liu H., Falzon B. G., Tan W., Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates, Compos. Part B Eng., 136, (2018), 101–118.10.1016/j.compositesb.2017.10.016
  9. 9. Sevkat E., Liaw B. M., Delale F., Raju B. B., Drop-weight impact responses of woven hybrid glass-graphite/toughened epoxy composites, ASME Int. Mech. Eng. Congr. Expo. Proc., 12(8), (2009), 223–233.10.1115/IMECE2008-68835
  10. 10. Ramachandra S., Sudheer Kumar P., Ramamurty U., Impact energy absorption in an Al foam at low velocities, Scr. Mater., 49(8), (2003), 741–745.10.1016/S1359-6462(03)00431-7
  11. 11. Harrigan J. J., Reid S. R., Peng C., Inertia effects in impact energy absorbing materials and structures, Int. J. Impact Eng., 22(9), (1999), 955–979.10.1016/S0734-743X(99)00037-8
  12. 12. Yoo D. Y., Yoon Y. S., Banthia N., Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate, Cem. Concr. Compos., 64, (2015), 84–92.10.1016/j.cemconcomp.2015.10.001
  13. 13. Skoczylas J., Samborski S., Kłonica M., Experimental Study on Static and Dynamic Fracture Toughness of Cured Epoxy Resins, Adv. Sci. Technol. Res. J., 13(1), (2019), 122–127.10.12913/22998624/104702
  14. 14. Mazar Atabaki M., Ma J., Liu W., Kovacevic R., Pore formation and its mitigation during hybrid laser/arc welding of advanced high strength steel, Mater. Des., 67, (2015), 509–521.10.1016/j.matdes.2014.10.072
  15. 15. Guo W., Crowther D., Francis J. A., Thompson A., Liu Z., Li L., Microstructure and mechanical properties of laser welded S960 high strength steel, Mater. Des., 85, (2015), 534–548.10.1016/j.matdes.2015.07.037
  16. 16. Haslberger P., Holly S., Ernst W., Schnitzer R., Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa, J. Mater. Sci., 53(9), 2018, 6968-6979.10.1007/s10853-018-2042-9
  17. 17. Węglowski M.S., Zeman M., Grocholewski A., Effect of welding thermal cycles on microstructure and mechanical properties of simulated heat affected zone for a Weldox 1300 ultra-high strength alloy steel, Arch. Metall. Mater., 61(1), (2016), 127–132.10.1515/amm-2016-0024
  18. 18. Kurc-Lisiecka A., Piwnik J., Lisiecki A., Laser welding of new grade of advanced high strength steel STRENX 1100 MC, Arch. Metall. Mater., 62(3), (2017), 1651–1657.10.1515/amm-2017-0253
  19. 19. Gáspár M., Sisodia R., Improving the HAZ toughness of Q+T high strength steels by post weld heat treatment, in IOP Conference Series: Materials Science and Engineering, 426, (2018), 012012.10.1088/1757-899X/426/1/012012
  20. 20. Su G., Gao X., Zhang D., Du L., Hu J., Liu Z., Impact of Reversed Austenite on the Impact Toughness of the High-Strength Steel of Low Carbon Medium Manganese, J. Miner., 70(5), (2018), 672–679.10.1007/s11837-017-2732-9
  21. 21. Nowacki J., Sajek A., Matkowski P., The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding, Arch. Civ. Mech. Eng., 16, (2016), 777–78310.1016/j.acme.2016.05.001
  22. 22. Szulc J., Chmielewski T., Pilat Z., Zrobotyzowane spawanie hybrydowe Plazma + MAG stali S700 MC Robotic hybrid Plasma + MAG welding of S700 MC steel, Przegląd Spaw. - Weld. Technol. Rev., 88(1), (2016), 41–45.10.26628/ps.v88i1.561
DOI: https://doi.org/10.2478/adms-2019-0014 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 19 - 31
Published on: Oct 11, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 J. Dorożyński, J. Nowacki, A. Sajek, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.