Have a personal or library account? Click to login
X-Ray Computer Tomography Study of Degradation of the Zircaloy-2 Tubes Oxidized at High Temperatures Cover

X-Ray Computer Tomography Study of Degradation of the Zircaloy-2 Tubes Oxidized at High Temperatures

Open Access
|Jul 2019

References

  1. 1. Proff C., Abolhassani S., Lemaignan C., Oxidation behaviour of zirconium alloys and their precipitates – A mechanistic study. J. Nucl. Mater. 432 (2013) 222–238.10.1016/j.jnucmat.2012.06.026
  2. 2. Allen T.R., Konings R.J.M., Motta A.T., Corrosion of zirconium alloys. [In] Comprehensive Nuclear Materials, R.J.M Konings. (ed.), Elsevier, Amsterdam, 2012, pp. 49–68.10.1016/B978-0-08-056033-5.00063-X
  3. 3. Park K., Yang S., Ho K., The effect of high pressure steam on the oxidation of low-Sn Zircaloy-4 at temperatures between 700 and 900 °C. J. Nucl. Mater. 420 (2012) 39–48.10.1016/j.jnucmat.2011.09.014
  4. 4. Steinbrück M., Böttcher M., Air oxidation of Zircaloy-4, M5 and ZIRLO cladding alloys at high temperatures. J. Nucl. Mater. 414 (2011) 276–285.10.1016/j.jnucmat.2011.04.012
  5. 5. Coindreau C., Duriez C., Ederli S. : Air oxidation of Zircaloy-4 in the 600–1000 °C temperature range: Modeling for ASTEC code application. J. Nucl. Mater. 405 (2010) 207–215.10.1016/j.jnucmat.2010.07.038
  6. 6. Selmi N., Sari A., Study of oxidation kinetics in air of Zircaloy-4 by in situ X-Ray diffraction. Adv. Mater. Phys. Chem. 3 (2013) 168–173.10.4236/ampc.2013.32023
  7. 7. Sawabe T., Sonoda T., Furuya M., Kitajima S., Kinoshita M., Tokiwai M., Microstructure of oxide layers formed on zirconium alloy by air oxidation, uniform corrosion and fresh-green surface modification. J. Nucl. Mater. 419 (2011) 310–319.10.1016/j.jnucmat.2011.05.028
  8. 8. Gong W, Zhang H, Qiao Y., Tian H., Ni X., Li Z., Wang X., Grain morphology and crystal structure of pre-transition oxides formed on Zircaloy-4. Corr. Sci. 74 (2013) 323–331.10.1016/j.corsci.2013.05.007
  9. 9. Harlow W., Ghassemi H., Taheri M.L., Determination of the initial oxidation behavior of Zircaloy-4 by in-situ TEM. J. Nucl. Mater. 474 (2016) 126–133.10.1016/j.jnucmat.2016.03.009
  10. 10. Ishii Y., Sykes J.M., Microstructure of oxide layers formed on Zircaloy-2 in air at 450°C. Mater. High Temp. 17 (2014) 23–28.10.1179/mht.2000.005
  11. 11. Gosset D., Le Saux M.L., Simeone D., Gilbon D. : New insights in structural characterization of zirconium alloys oxidation at high temperature. J. Nucl. Mater. 429 (2012) 19–24.10.1016/j.jnucmat.2012.05.003
  12. 12. Gosset D., Le Saux M.L., In-situ X-ray diffraction analysis of zirconia layer formed on zirconium alloys oxidized at high temperature. J. Nucl. Mater. 458 (2015) 245–252.10.1016/j.jnucmat.2014.12.067
  13. 13. Baek J.H., Jeong Y.H., Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation. J. Nucl. Mater. 372 (2008) 152–159.10.1016/j.jnucmat.2007.02.011
  14. 14. Yamato M, Nagase F, Amaya M., Reduction in the onset time of breakaway oxidation on Zircaloy cladding ruptured under simulated LOCA conditions. J. Nucl. Mater. 445 (2014) 78–83.10.1016/j.jnucmat.2013.10.044
  15. 15. Fettré D., Favergeon J., Bouvier S., Detection of breakaway for a high-temperature oxidation of pure zirconium using acoustic emission correlated to thermogravimetry. Oxid. Met. 87 (2017) 367–379.10.1007/s11085-017-9737-1
  16. 16. Kim H.G., Kim I.H., Choi B.K., Park Y.Y., A study of the breakaway oxidation behavior of zirconium cladding materials. J. Nucl. Mater. 418 (2011) 186–197.10.1016/j.jnucmat.2011.06.039
  17. 17. Kim H.H., Kim J.H., Moon J.Y., Lee H.S., Kim J.J., Chai Y.S., High-temperature oxidation behavior of Zircaloy-4 and Zirlo in steam ambient. J. Mater. Sci. Technol. 26 (2010) 827–832.10.1016/S1005-0302(10)60132-6
  18. 18. Zienkiewicz N., Paradowska J., Serbinski W., Gajowiec G., Hernik A., Zielinski A., Oxidation and hydrogen behavior in Zr-2Mn alloy. Adv. Mater. Sci. 18 (2018) 37–48.10.1515/adms-2017-0030
  19. 19. Annand K., Nord M., Maclaren I., Gass M., The corrosion of Zr(Fe, Cr)2 and Zr2Fe secondary phase particles in Zircaloy-4 under 350 °C pressurised water conditions. Corr. Sci. 128 (2017) 213–223.10.1016/j.corsci.2017.09.014
  20. 20. Park D.J., Park J.Y., Jeong J.H., Microstructural analysis and XPS investigation of nodular oxides formed on Zircaloy-4. J. Nucl. Mater. 412 (2011) 233–238.10.1016/j.jnucmat.2011.03.010
  21. 21. Lee C.M., Mok Y.K., Sohn D.S. : High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding. J. Nucl. Mater. 496 (2017) 343–352.10.1016/j.jnucmat.2017.10.013
  22. 22. Nikulin S.A., Rogachev S.O., Rozhnov A.B., Gusev A.Yu., Malgin A.G., Abramov N.N., Zharotsheva K.S., Khatkevich V.M., Koteneva M.V., Li E.V., The mechanism and kinetics of the fuel cladding failure during loading after high-temperature oxidation. J. Nucl. Mater. 452 (2014) 102–109.10.1016/j.jnucmat.2014.05.006
  23. 23. Ni N., Lozano-Perez S., Sykes J.M., Smith G.D.W., Grovenor C.R.M., Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLO alloys during corrosion in high temperature pressurised water. Corr. Sci. 53 (2011) 4073–4083.10.1016/j.corsci.2011.08.013
  24. 24. Ni N., Lozano-Perez S., Sykes J., Grovenor C. : Multi-scale characterisation of oxide on zirconium alloys. Mater. High. Temp. 29 (2014) 166–170.10.3184/096034012X13334555476487
  25. 25. Steinbrück M., Vér N., Große M., Oxidation of Advanced Zirconium Cladding Alloys in Steam at Temperatures in the Range of 600–1200 °C. Oxid. Met. 76 (2011) 215–232.10.1007/s11085-011-9249-3
  26. 26. Favergeon J., Montesin T., Mechano-Chemical Aspects of High Temperature Oxidation: A Mesoscopic Model Applied to Zirconium Alloys. Met. Oxid. 64 (2005) 252–279.10.1007/s11085-005-6563-7
  27. 27. Duriez C., Dupont T., Schmet B., Enoch F., Zircaloy-4 and M5® high temperature oxidation and nitriding in air. J. Nucl. Mater. 380 (2008) 30–45.10.1016/j.jnucmat.2008.07.002
  28. 28. Zeng C., Ling Y., Bai Y., Zhang R., Dai X., Chen Y., Hydrogen permeation characteristic of nanoscale passive films formed on different zirconium alloys. Intl. J. Hydrogen Energy 41 (2016) 7676–7690.10.1016/j.ijhydene.2016.01.174
  29. 29. Zieliński A., Cymann A., Gumiński A., Hernik A., Gajowiec G., Influence of high temperature oxidation hydrogen absorption and degradation of Zircaloy-2 and Zr 700 alloys. High Temp. Mater. Proc. 38 (2019) 8–15.10.1515/htmp-2017-0074
  30. 30. Yoo H.-I., Koo B.-J., Hong J.-O., Hwang I.-S., Yeong I.-H., A working hypothesis on oxidation kinetics of Zircaloy. J. Nucl. Mater. 299 (2001) 235–241.10.1016/S0022-3115(01)00695-X
  31. 31. Lee K. W., Hong S.I., Zirconium hydrides and their effect on the circumferential mechanical properties of Zr–Sn–Fe–Nb tubes. J. Alloys Cmpds 346 (2002) 302–307.10.1016/S0925-8388(02)00527-3
  32. 32. Kurpaska L., Jozwik I., Jagielski J., Study of sub-oxide phases at the metal-oxide interface in oxidized pure zirconium and Zr-1.0% Nb alloy by using SEM/FIB/EBSD and EDS techniques. J. Nucl. Mater. 299 (2001) 235–241.
  33. 33. De Gabory B., Motta A.T., Wang K., Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO oxide layers. J. Nucl. Mater. 456 (2015) 272–280.10.1016/j.jnucmat.2014.09.073
  34. 34. Tejland P., Andrén H.-A., Origin and effect of lateral cracks in oxide scales formed on zirconium alloys. J. Nucl. Mater. 430 (2012) 64–71.10.1016/j.jnucmat.2012.06.039
  35. 35. Guerain M., Duriez C., Grosseau-Poussard J.L., Mermoux M., Review of stress fields in zirconium alloys corrosion scales. Corr. Sci. 95 (2015) 11–21.10.1016/j.corsci.2015.03.004
  36. 36. Baris S., Abolhassani Y.L., Chiu L., Evans H.E., (2018) Observation of crack microstructure in oxides and its correlation to oxidation and hydrogen-uptake by 3D FIB Tomography – case of Zr-ZrO2 in reactor. Mater. High Temp. 35 (2018) 14–21.10.1080/09603409.2017.1392412
  37. 37. Birchley J., Fernandez-Moguel L. : Simulation of air oxidation during a reactor accident sequence: Part 1 - Phenomenology and model development. Ann. Nucl. Energy. 40 (2012) 163–170.10.1016/j.anucene.2011.10.019
  38. 38. Rudling P., Wikmark G.A., A unified model of Zircaloy BWR corrosion and hydriding mechanisms. J. Nucl. Mater. 265 (1999) 44–59.10.1016/S0022-3115(98)00613-8
  39. 39. Yilmazbayhan A., Breval E., Motta A.T., Comstock R.J., Transmission electron microscopy examination of oxide layers formed on Zr alloys. J. Nucl. Mater. 349 (2006) 265–281.10.1016/j.jnucmat.2005.10.012
  40. 40. Steinbrück M., Birchley J., Boldyrev A.V., Goryachev A.V., Grosse M., Haste T.J., Hózer Z., Kisselev A.E., Nalivaev V.I., Semishkin V.P., Sepold L., Stuckert J., Vér N., Veshchunov M.S., High temperature oxidation and quench behaviour of Zircaloy-4 and E110 cladding alloys. Progr. Nucl. Energy 52 (2010) 19–36.10.1016/j.pnucene.2009.07.012
  41. 41. Kawashima N.K.S.H., Mechanism of zircaloy nodular corrosion J. Nucl. Mater. 119 (1983) 229–239.10.1016/0022-3115(83)90199-X
  42. 42. Likhanskii V.V., Evdokimov L.A., Effect of additives on the susceptibility of zirconium alloys to nodular corrosion. J. Nucl. Mater. 392 (2009) 447–452.10.1016/j.jnucmat.2009.04.003
DOI: https://doi.org/10.2478/adms-2019-0011 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 54 - 71
Published on: Jul 2, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 B. Trybuś, J. M. Olive, N. Lenoir, A. Zieliński, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.