Have a personal or library account? Click to login
Problems of Pad Welding Structural Steels with Martensitic Filler Metal Cover

Problems of Pad Welding Structural Steels with Martensitic Filler Metal

Open Access
|Jul 2019

References

  1. 1. Marshall A. W., Farrar J. C. M., Welding of ferritic and martensitic 11–14%Cr steels. Welding in the World, 45 (2001) 32–55.
  2. 2. Tuz L., Evaluation of microstructure and selected mechanical properties of laser beam welded S690QL high-strength steel. Advances in Materials Science, 18(3) (2018) 34–42.10.1515/adms-2017-0039
  3. 3. Rakoczy Ł., Grudzień M., Tuz L., Pańcikiewicz K., Zielińska-Lipiec A., Microstructure and properties of a repair weld in a nickel based superalloy gas turbine component. Advances in Materials Science, 17(2) (2017) 55–63.10.1515/adms-2017-0011
  4. 4. Pańcikiewicz K., Structure and properties of welded joints of 7CrMoVTiB10-10 (T24) steel. Advances in Materials Science, 18(1) (2018) 37–47.10.1515/adms-2017-0026
  5. 5. Tavaresa S.S.M., Norisc L.F., Pardalb J.M., da Silvad M.R., Temper embrittlement of supermartensitic stainless steel and non-destructive inspection by magnetic Barkhausen noise. Engineering Failure Analysis Journal, 100 (2019) 322–328.10.1016/j.engfailanal.2019.02.034
  6. 6. Foroozmehra F., Verremana Y., Chena J., Thibaultb D., Bocher P., Effect of inclusions on fracture behavior of cast and wrought 13% Cr-4% Ni martensitic stainless steels. Engineering Fracture Mechanics, 175 (2017) 262–278.10.1016/j.engfracmech.2017.02.002
  7. 7. Gooch G. T., Heat treatment of welded 13% Cr – 4% Ni martensitic stainless steel for sour service. Welding Journal, 74 (1995) 213 ÷223.
  8. 8. Liu Y., Ye D., Yong Q., Su J., Zhao K., Jiang W., Effect of heat treatment on microstructure and property of Cr13 super martensitic stainless steel. Journal Iron and Steel Research International, 18 (2011) 60–66.10.1016/S1006-706X(11)60118-0
  9. 9. Jiang W., Zhao K., Ye D., Li J., Li Z., Su J., Effect of heat treatment on reversed austenite in Cr15 super martensitic stainless steel. Journal Iron and Steel Research International, 20 (2013) 61–65.10.1016/S1006-706X(13)60099-0
  10. 10. Escobar J. D., Poplawsky J. D., Faria G. A., Rodriguez J., Ramirez A. J., Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: Segregation, partitioning and carbide precipitation. Materials & Design, 140 (2018) 95–105.10.1016/j.matdes.2017.11.055
  11. 11. Wang P., Xiao N., Lu S., Li D., Li Y., Investigation of the mechanical stability of reversed austenitein 13%Cr–4%Ni martensitic stainless steel during the uniaxialtensile test. Materials Science & Engineering A, 586 (2013) 292–300.10.1016/j.msea.2013.08.028
  12. 12. Zhang S., Wang P., Li D., Li Y., Investigation of the evolution of retained in Fe–%Cr–%Ni martensitic stainless steel during intercritical tempering austenite 13 4. Materials & Design, 84 (2015) 385–394.10.1016/j.matdes.2015.06.143
  13. 13. De Sanctis M., Lovicu G., Buccioni M., Donato A., Richetta M., Varone A., Study of 13Cr-4Ni-(Mo) (F6NM) Steel Grade Heat Treatment for Maximum Hardness Control in Industrial Heats. Metals, 7, 351 (2017) 1–14.10.3390/met7090351
  14. 14. Ziewiec A., Zielińska-Lipiec A., Kowalska J., Ziewiec K., Microstructure Characterization of Welds in X5CrNiCuNb16-4 Steel in Overaged Condition. Advances in Materials Science, 19(1) (2019) 57–69.10.2478/adms-2019-0005
  15. 15. Man C., Dong C., Kong D., Wang L., Li X. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel. Corrosion Science, 151 (2019) 108–121.10.1016/j.corsci.2019.02.020
  16. 16. Chellappan M., Lingadurai K., Sathiya P. Characterization and Optimization of TIG welded supermartensitic stainless steel using TOPSIS. Materials Today: Proc., 4 (2017) 1662–1669.10.1016/j.matpr.2017.02.005
  17. 17. Tavares S.S.M., Silva M.B., de Macêdo M.C.S., Strohaecker T.R., Costa V.M. Characterization of fracture behavior of a Ti alloyed supermartensitic 12%Cr stainless steel using Charpy instrumented impact tests. Engineering Failure Analysis, 82 (2017) 695–70210.1016/j.engfailanal.2017.06.002
  18. 18. Gulvin T., F.; Scott J. i inni: The influence of stress relief on the properties of C and C-Mn pressure-vessel plate steels, J. West. Scott. Iron Steel Inst. 80 (1972–73) 149–175.
  19. 19. Lochhead J., C., Speirs A., The effects of heat treatment on pressure-vessel steels, J. West. Scott. Iron Steel Inst., 80 (1972–73) 188–219.
  20. 20. Watkins B. i inni Effects of prolonged stress relieving treatments on the properties of reactor pressure – vessel steels, British Weld. Journ., 10 (1963) 15–21.
  21. 21. Tasak E. The influence of heat treatment on the properties of joints, Przegląd Spawalnictwa 62 (1990) 1–4 , in Polish.
  22. 22. Wątróbska B, Tasak E, Structure and properties of welded joints of chromium-nickel stainless steels containing soft martensite. Transactions of the Conference “Materials Engineering Yesterday, Today and Tomorrow” AGH, Krakow, 2005, 103–106, in Polish.
  23. 23. Hayes C., Patrick D. H., Hardness conversion data for CA6NM alloy. Metallography, 16 (1983) 229–235.10.1016/0026-0800(83)90006-X
DOI: https://doi.org/10.2478/adms-2019-0008 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 5 - 14
Published on: Jul 2, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 E. Tasak, A. Ziewiec, A. Zielińska-Lipiec, K. Ziewiec, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.