Have a personal or library account? Click to login
Synthesis, Characterization and Biological Properties of Intercalated Kaolinite Nanoclays: Intercalation and Biocompatibility Cover

Synthesis, Characterization and Biological Properties of Intercalated Kaolinite Nanoclays: Intercalation and Biocompatibility

Open Access
|Apr 2019

References

  1. 1. Nazir, M.S., Mohamad-Kassim, M.H., Mohapatra, L., Gilani, M.A., Raza, M.R., Majeed, K. (2016) Secondary characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In: (Jawaid, M., Qaiss, A.e.K., Bouhfid, R.) Nanoclay reinforced polymer composites, Springer Singapore, 35-55.10.1007/978-981-10-1953-1_2
  2. 2. Maisanaba, S., Pichardo, S., Puerto, M., Gutiérrez-Praena, D., Cameán, A., Jos, A. (2015) Toxicological evaluation of clay minerals and derived nanocomposites: A review. Environmental Research, 138, 233-254.10.1016/j.envres.2014.12.02425732897
  3. 3. Koosha, M., Mirzadeh, H., Shokrgozar, M.A., Farokhi, M. (2015) Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Advances,5, 10479-10487.10.1039/C4RA13972K
  4. 4. Awada, M, López-Galindo, A., Setti, M., El-Rahmany, M., Iborra C.V. (2017) Kaolinite in pharmaceutics and biomedicine. International Journal of Pharmaceutics, 533, 34-48.10.1016/j.ijpharm.2017.09.05628943206
  5. 5. Hun-Kim, M., Choi, G., Elzatahry, A., Vinu, A., Bin Choy, Y., Choy, J.-H. (2016) Review of clay-drug hybrid materials for biomedical applications: Administration routes. Clays and Clay Minerals,64, 115-130.10.1346/CCMN.2016.0640204709164132218609
  6. 6. Karaog~lu, M.H., Dog~an, M., Alkan, M. (2010) Removal of reactive blue 221 by kaolinite from aqueous solutions. Industrial & Engineering Chemistry Research,49, 1534-1540.10.1021/ie9017258
  7. 7. Ganguly, S., Dana, K., Mukhopadhyay, T.K., Parya, T.K., Ghatak, S. (2011) Organophilic nano clay: A comprehensive review. Transactions of the Indian Ceramic Society,70, 189-206.10.1080/0371750X.2011.10600169
  8. 8. Zhang, S., Liu, Q., Cheng, H., Zeng, F. (2015) Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide. Applied Surface Science,331, 234-240.10.1016/j.apsusc.2015.01.019
  9. 9. Benlikaya, R., Bütün, V., Alkan, M. (2016) Modified kaolinites-polyalkyl methacrylate nanocomposites: Exploring relations between solubility parameters and thermal properties for in situ solution polymerization. Polymer Composites,37, 2333-2341.10.1002/pc.23412
  10. 10. Lordan, S., Kennedy, J.E., Higginbotham, C.L. (2011) Cytotoxic effects induced by unmodified and organically modified nanoclays in the human hepatic HepG2 cell line. Journal of Applied Toxicology,31, 27-35.10.1002/jat.156420677180
  11. 11. Maisanaba, S., Pichardo, S., Puerto, M., Gutiérrez-Praena, D., Cameán, A. M., Jos, A. (2015) Toxicological evaluation of clay minerals and derived nanocomposites: A review. Environmental Research,138, 233-254.10.1016/j.envres.2014.12.02425732897
  12. 12. Rajiv, S., Jerobin, J., Saranya, V., Nainawat, M., Sharma, A., Makwana, P., Gayathri, C., Bharath, L., Singh, M., Kumar, M., Mukherjee, A., Chandrasekaran, N. (2015) Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Human and Experimental Toxicology, 35, 170-183.10.1177/096032711557920825829403
  13. 13. Assadian, E., Zarei M., Gilani, A., Mehrzad, F., Farshin, Degampanah, H., Pourahmad, J. (2018) Toxicity of Copper Oxide (CuO) Nanoparticles on Human Blood Lymphocytes. Biological Trace Element Research,184, 350-357.10.1007/s12011-017-1170-429064010
  14. 14. Turhan, Y., Dogan, M., Alkan, M. (2010) Poly (vinyl chloride)/kaolinite nanocomposites: Characterization and thermal and optical properties. Industrial & Engineering Chemistry Research,49, 1503-1513.10.1021/ie901384x
  15. 15. Ota, Y., Ishihara, S., Otani, K., Yasuda, K., Nishikawa, T., Tanaka, T., Tanaka, J., Kiyomatsu, T., Kawai, K., Hata, K., Nozawa, H., Kazama, S., Yamaguchi, H., Sunami, E., Kitayama, J., Watanabe, T. (2016) Effect of nutrient starvation on proliferation and cytokine secretion of peripheral blood lymphocytes. Molecular Clinical Oncology,4, 607-610.10.3892/mco.2016.763481215027073674
  16. 16. Yilmaz, B., Dogan, S., Celikler Kasimogullari, S. (2018) Hemocompatibility, cytotoxicity, and genotoxicity of poly(methylmethacrylate)/nanohydroxyapatite nanocomposites synthesized by melt blending method. International Journal of Polymeric Materials and Polymeric Biomaterials,67, 1-10.10.1080/00914037.2017.1331349
  17. 17. Maisanaba, S., Gutiérrez-Praena, D., Pichardo, S., Moreno, F. J., Jordá, M., Cameán, A. M., Aucejo, S., Jos, Á. (2014) Toxic effects of a modified montmorillonite clay on the human intestinal cell line Caco-2. Journal of Applied Toxicology,34, 714-725.10.1002/jat.294524122917
  18. 18. Promega, Celltiter 96® aqueous one solution cell proliferation assay, http://Www.Promega.Com/Protocols/, Promega Corporation, Madison, WI 53711 USA, 2012.
  19. 19. Ahamed, M., Akhtar, M., Alhadlaq, H., Khan, M., Alrokayan, S. (2015) Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. Chemosphere,135, 278-288.10.1016/j.chemosphere.2015.03.07925966046
  20. 20. Attik, G., Villat, C., Hallay, F., Pradelle~Plasse, N., Bonnet, H., Moreau, K., Colon, P., Grosgogeat, B. (2014) In vitro biocompatibility of a dentine substitute cement on human MG63 osteoblasts cells: Biodentine™ versus MTA®. International Endodontic Journal,47, 1133-1141.10.1111/iej.1226124517569
  21. 21. Motlagh, D., Allen, J., Hoshi, R., Yang, J., Lui, K., & Ameer, G. (2007). Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. J Biomed Mater Res A, 82(4), 907-916. doi:10.1002/jbm.a.3121110.1002/jbm.a.3121117335023
  22. 22. Zhang, S., Liu, Q., Cheng, H., Gao, F., Liu, C., Teppen, B. J. (2018) Mechanism responsible for intercalation of dimethyl sulfoxide in kaolinite: Molecular dynamics simulations. Applied Clay Science, 151, 46-53.10.1016/j.clay.2017.10.022
  23. 23. Mehdi, K., Bendenia, S., Lecomte-Nana, G. L., Batonneau-Gener, I., Rossignol, F., Marouf-Khelifa, K., Khelifa, A. (2018) A new approach about the intercalation of hexadecyltrimethylammonium into halloysite: preparation, characterization, and mechanism. Chemical Papers, 73, 131-139.10.1007/s11696-018-0558-8
  24. 24. Elbokl, T.A., Detellier, C. (2008). Intercalation of cyclic imides in kaolinite. Journal of Colloid and Interface Science. 323, 338-348.10.1016/j.jcis.2008.04.003
  25. 25. Lakshmi, M.S., Narmadha, B., Reddy, B.S.R. (2008) Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polymer Degradation and Stability,93, 201-213.10.1016/j.polymdegradstab.2007.10.005
  26. 26. Bowman, P.D., Wang, X., Meledeo, M.A., Dubick, M.A., Kheirabadi, B.S. (2011) Toxicity of aluminum silicates used in hemostatic dressings toward human umbilical veins endothelial cells, HeLa cells, and RAW267.4 mouse macrophages. Journal of Trauma,71, 727-732.10.1097/TA.0b013e3182033579
  27. 27. Imerys. Kaolin China Clay, 2012. Available from: http://www.imerysperfmins.com/kaolin/eu/kaolin.htm
  28. 28. Michel, C., Herzog, S., de Capitani, C., Burkhardt-Holm, P., Pietsch, C. (2014) Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro. PLoS One,9 e100856.10.1371/journal.pone.0100856
  29. 29. Murphy, E.J., Roberts, E., Horrocks, L.A. (1993) Aluminum silicate toxicity in cell cultures. Neuroscience,55, 597-605.10.1016/0306-4522(93)90527-M
  30. 30. Bessa, M.J., Costa, C., Reinosa, J., Pereira, C., Fraga, S., Fernández, J., Bañares, M.A., Teixeira, J.P. (2017) Moving into advanced nanomaterials. Toxicity of rutile TiO2 nanoparticles immobilized in nanokaolin nanocomposites on HepG2 cell line. Toxicology and Applied Pharmacology,316, 114-122.10.1016/j.taap.2016.12.018
  31. 31. Rawtani, D., Agrawal, Y.K. (2012) Multifarious applications of halloysite nanotubes: A review. Reviews on Advanced Materials Science,30, 282-295.
  32. 32. Ahmed, F. R., Shoaib, M.H., Azhar, M., Um, S.H., Yousuf, R.I., Hashmi, S., Dar, A. (2015) Invitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes. Colloids Surf B Biointerfaces,135, 50-55.10.1016/j.colsurfb.2015.07.02126241916
  33. 33. Mousa, M., Evans, N. D., Oreffo, R. O. C, Dawson, J. I. (2018) Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials,159, 204-214.10.1016/j.biomaterials.2017.12.02429331807
  34. 34. Geh, S., Yücel, R., Duffin, R., Albrecht, C., Borm, P. J.A., Armbruster, L., Raulf-Heimsoth, M., Brüning, T., Hoffmann, E., Rettenmeier, A.W., Dopp, E. (2005) Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts. Archives of Toxicology,80, 98-106.10.1007/s00204-005-0013-9
  35. 35. Tiburu, E.K., Fleischer, H.N., Aidoo, E.O., Salifu, A., Asimeng, B.O., Zhou, H. (2016) Crystallization of linde type a nanomaterials at two temperatures exhibit differential inhibition of hela cervical cancer cells in vitro. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 28, 66-77.10.4028/www.scientific.net/JBBBE.28.66
  36. 36. Maisanaba, S., Ortuño, N., Jordá-Beneyto, M., Aucejo, S., Jos, Á. (2017) Development, characterization and cytotoxicity of novel silane-modified clay minerals and nanocomposites intended for food packaging. Applied Clay Science,138, 40-47.10.1016/j.clay.2016.12.042
  37. 37. Milosevic, N.P., Kojic, V., Curcic, J., Jakimov, D., Milic, N., Banjac, N., Uscumlic, G., Kaliszan, R. (2017) Evaluation of in silico pharmacokinetic properties and in vitro cytotoxic activity of selected newly synthesized n-succinimide derivatives. Journal of Pharmaceutical and Biomedical Analysis, 137, 252-257.10.1016/j.jpba.2017.01.04228167418
  38. 38. Chen, Y.P., Wu, S.H., Chen, I.C., Chen, C.T. (2017) Impacts of cross-linkers on biological effects of mesoporous silica nanoparticles. ACS Applied Materials and Interfaces,9,10254-10265.10.1021/acsami.7b0024028229590
  39. 39. Vega-Chacón, J., Arbeláez, M.I.A., Jorge, H.J., Marques, R.F.C., Jafelicci Jr, M. (2017) pH-responsive poly(aspartic acid) hydrogel-coatedmagnetite nanoparticles for biomedical applications. Materials Science and Engineering C,77, 366-373.10.1016/j.msec.2017.03.24428532042
  40. 40. Shanthini, G.M., Martin, C.A., Sakthivel, N., Veerla, S.C., Elayaraja, K., Lakshmi, B. S., Asokan, K., Kanjilal, D., Kalkura, S. N. (2015) Physical and biological properties of the ion beam irradiated PMMA-based composite films. Applied Surface Science,329, 116-126.10.1016/j.apsusc.2014.12.129
  41. 41. Liu, H.-Y., Du, L., Zhao, Y.-T., Tian, W.-Q. (2015) In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. Journal of Nanomaterials, 2015, 1-9.10.1155/2015/685323
DOI: https://doi.org/10.2478/adms-2019-0007 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 83 - 99
Published on: Apr 15, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 B. Yilmaz, E. T. Irmak, Y. Turhan, S. Doğan, M. Doğan, O. Turhan, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.