Have a personal or library account? Click to login
Trends of Joining Composite AlSi-SiC Foams Cover
By: J. Nowacki and  A. Sajek  
Open Access
|Apr 2019

References

  1. 1. Kathuria Y. P., Nd-YAG laser assisted aluminum foaming, J. Mater. Process. Technol., 142(2), (2003) 466–470.10.1016/S0924-0136(03)00643-5
  2. 2. Ashby M. F., Evans A., Fleck N., Gibson L. Hutchinson J.W., Wadley H. N., Metal foams: a design guide. Butterworth-Heinemann, 2000.10.1115/1.1421119
  3. 3. Dunn B. D., Spacecraft Manufacturing—Failure Prevention and the Application of Material Analysis and Metallography, in Materials and Processes: for Spacecraft and High Reliability Applications, Springer International Publishing, 2016, 115–245.10.1007/978-3-319-23362-8_4
  4. 4. Su L., Liu H., Yao G., and Zhang J., Experimental study on the closed-cell aluminum foam shock absorption layer of a high-speed railway tunnel, Soil Dyn. Earthq. Eng., 119(2) (2019) 331–345.10.1016/j.soildyn.2019.01.012
  5. 5. Uzay C., Geren N., Boztepe M. H., Bayramoglu M., Bending behavior of sandwich structures with different fiber facing types and extremely low-density foam cores, Mater. Test., 61(3) (2019) 220–230.10.3139/120.111311
  6. 6. Bucher T., Laser Forming of Metal Foam: Mechanisms, Efficiency and Prediction, Columbia University, 2019.
  7. 7. Jiang Z. Y., Qu Z. G., Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study, Appl. Energy, 242(2) (2019) 378–392.10.1016/j.apenergy.2019.03.043
  8. 8. Dai Z., Nawaz K., Park Y., Chen Q., Jacobi A. M., A Comparison of Metal-Foam Heat Exchangers to Compact Multilouver Designs for Air-Side Heat Transfer Applications, Heat Transf. Eng., 33(1) (2011) 21–30.10.1080/01457632.2011.584812
  9. 9. Burzer J., Bernard T., W. Bergmann H., Joining of aluminium structures with aluminium foams, in Porous and Cellular Materials for Structural Applications, Vol. 521, San Francisco, California, U.S.A.: Material Research Society, 1998, 160–165.10.1557/PROC-521-159
  10. 10. Campana G., Ascari A., Fortunato A., Laser foaming for joining aluminum foam cores inside a hollow profile, Opt. Laser Technol., 48, (2013) 331–336.10.1016/j.optlastec.2012.11.005
  11. 11. Nowacki J. Moraniec K., Welding of metallic AlSi foams and AlSi-SiC composite foams, Arch. Civ. Mech. Eng., 15(4), (2015) 940–950.10.1016/j.acme.2015.02.007
  12. 12. Bernard B. T., Bergmann H. W., Haberling C., Joining Technologies for Al-Foam ± Al-Sheet Compound Structures, Adv. Eng. Mater., 10, (2002) 798–802.10.1002/1527-2648(20021014)4:10<;798::AID-ADEM798>3.0.CO;2-Z
  13. 13. Lu J., Mu Y., Luo X., Niu J., A new method for soldering particle-reinforced aluminum metal matrix composites, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 177(20), (2012) 1759–1763.10.1016/j.mseb.2012.08.001
  14. 14. Wan L., Huang Y., Huang T., Lv Z., Feng J., Interfacial behavior and mechanical properties of aluminum foam joint fabricated by surface self-abrasion fluxless soldering, J. Alloys Compd., 671, (2016) 346–353.10.1016/j.jallcom.2016.01.246
  15. 15. Huang Y., Gong J., Lv S., Leng J., Li Y., Fluxless soldering with surface abrasion for joining metal foams, Mater. Sci. Eng. A, 552, (2012) 283–287.10.1016/j.msea.2012.05.041
  16. 16. Ubertalli G., Ferraris M., Bangash M. K., Joining of AL-6016 to Al-foam using Zn-based joining materials, Compos. Part A Appl. Sci. Manuf., 96, (2017) 122–128.10.1016/j.compositesa.2017.02.019
  17. 17. Nowacki J.. Moraniec K., Evaluation of Methods of Soldering AlSi and AlSi-SiC Particle Composite Al Foams, J. Mater. Eng. Perform., 24(1), (2015) 426–433.10.1007/s11665-014-1246-7
  18. 18. Sajek A., Aluminum foams gluing, Metall. Foundry Eng., 39(2), (2013) 17–24.10.7494/mafe.2013.39.2.15
  19. 19. Nowacki J., Sajek A., Matkowski P., The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding, Arch. Civ. Mech. Eng., 16, (2016) 777–783.10.1016/j.acme.2016.05.001
  20. 20. Nowacki J. Sajek A., Optimizing glue joint of aluminium metallic foams, J. Achiev. Mater. Manuf. Eng., 75(1), (2016) 14–23.10.5604/17348412.1227681
  21. 21. Ohsenbrügge C., Marth W., Navarro I., De Sosa Y., Drossel W. G, Voigt A., Reduced material model for closed cell metal foam infiltrated with phase change material based on high resolution numerical studies, Appl. Therm. Eng., 94, (2016) 505–512.10.1016/j.applthermaleng.2015.09.102
  22. 22. Yang F., Niu W., Jing L., Wang Z., Zhao L., Ma H., Experimental and numerical studies of the anti-penetration performance of sandwich panels with aluminum foam cores, Acta Mech. Solida Sin., 28(6), (2015) 735–746.10.1016/S0894-9166(16)30013-1
  23. 23. Liu C., Zhang Y. X., Yang C., Numerical modelling of mechanical behaviour of aluminium foam using a representative volume element method, Int. J. Mech. Sci., 118, (2016) 155–165.10.1016/j.ijmecsci.2016.08.021
  24. 24. Lazaro J., Solorzano E., Rodriguez-Perez M. A., Kennedy A. R., Effect of solidification rate on pore connectivity of aluminium foams and its consequences on mechanical properties, Mater. Sci. Eng. A, 672, (2016) 236–246.10.1016/j.msea.2016.07.015
DOI: https://doi.org/10.2478/adms-2019-0006 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 70 - 82
Published on: Apr 15, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 J. Nowacki, A. Sajek, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.