Have a personal or library account? Click to login
The Influence of Laser Alloying of Ti13Nb13Zr on Surface Topography and Properties Cover

The Influence of Laser Alloying of Ti13Nb13Zr on Surface Topography and Properties

Open Access
|Apr 2019

References

  1. 1. Suchanek K., Bartkowiak A., Gdowik A., Perzanowski M., Kąc S., Szaraniec B., Suchanek M., Marszałek M.: Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates. Materials Science and Engineering C 51 (2015) 57-63.10.1016/j.msec.2015.02.029
  2. 2. Park J.B., Kim Y.K.: Metallic biomaterials. [In] Biomaterials: Principles and Applications, Park J.B. [ed.], CRC Press, Boca Raton, (2003) 1-21.10.1201/9781420040036.ch1
  3. 3. Oldani C., Dominguez A.: Titanium as a biomaterial for implants. Recent Advances in Arthroplasty (2012) 149-162.10.5772/27413
  4. 4. El-Rahman S.S.A.: Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacological Research 47 3 (2003) 189-194.10.1016/S1043-6618(02)00336-5
  5. 5. Bartmański M., Berk A., Wójcik A.: The Determinants of Morphology and Properties of the Nanohydroxyapatite Coating Deposited on the Ti13Nb13Zr Alloy by Electrophoretic Technique. Advances in Materials Science 16 3 (2016) 56-6610.1515/adms-2016-0017
  6. 6. Jin M., Yao S., Wang L.-N., Qiao Y., Volinsky A.A.: Enhanced bond strength and bioactivity of interconnected 3D TiO2 nanoporous layer on titanium implants. Surface & Coatings Technology 304 (2016) 459-467.10.1016/j.surfcoat.2016.05.038
  7. 7. İzmir M., Ercan B.: Anodization of titanium alloys for orthopedic applications. Frontiers of Chemical Science and Engineering (2019), 1-18.10.1007/s11705-018-1759-y
  8. 8. Vlcak P., Fojt J., Weiss Z., Kopeček J., Perina V.: The effect of nitrogen saturation on the corrosion behaviour of Ti-35Nb-7Zr-5Ta beta titanium alloy nitrided by ion implantation. Surface & Coatings Technology 358 (2019) 144-152.10.1016/j.surfcoat.2018.11.004
  9. 9. Kashkarov E.B., Nikitenkov N.N., Sutygina A.N., Syrtanov M.S., Vilkhivskaya O.V., Pryamushko T.S., Kudiiarov V.N., Volesky L.: Effect of titanium ion implantation and deposition on hydrogenation behavior of Zr-1Nb alloy. Surface & Coatings Technology 308 (2016) 2-9.10.1016/j.surfcoat.2016.07.111
  10. 10. Simka W. Mosiałek M., Nawrat G., Nowak P., Żak J., Szade J., Winiarski A., Maciej A., Szyk-Warszyńska L.: Electrochemical polishing of Ti–13Nb–13Zr alloy. Surface & Coatings Technology 213 (2012) 239–246.10.1016/j.surfcoat.2012.10.055
  11. 11. Vasylyev M.A., Chenakin S.P., Yatsenko L.F.: Nitridation of TiA6AlA4V alloy under ultrasonic impact treatment in liquid nitrogen. Acta Materialia 60 (2012), 6223–6233.10.1016/j.actamat.2012.08.006
  12. 12. Dumas V., Guignandon A., Vico L., Mauclair C., Zapata X., Linossier M.T., Bouleftour W., Granier J., Peyroche S., Dumas J.-C., Zahouani H., Rattner A.: Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomedical Materials 10 (2015), 55002.10.1088/1748-6041/10/5/05500226334374
  13. 13. Mitura S.: Novel Synthesis nanocrystalline Diamond Films. Innovative Processing of Films and Nanocrystalline Powders. IC Press (2002), 107-146.10.1142/9781860949623_0004
  14. 14. Drevet R., Ben Jaber N., Fauréa J., Taraa A., Ben Cheikh Larbib A., Benhayounea H.: Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V sustrates. Surface & Coatings Technology 301 (2016), 94-99.10.1016/j.surfcoat.2015.12.058
  15. 15. Bartmański M, Cieslik B., Glodowska J., Kalka P., Pawlowski L., Piepera M., Zielinski A.: Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy. Ceramics International 43 15 (2017), 11820-11829.10.1016/j.ceramint.2017.06.026
  16. 16. Łatka L., Pawłowski L., Chicot D., Pierlot C., Petit F.: Mechanical properties of suspension plasma sprayed hydroxyapatite coatings submitted to simulated body fluid. Surface and Coatings Technology, 205 (2010), 954-960.10.1016/j.surfcoat.2010.06.025
  17. 17. Jazdzewska M., Majkowska-Marzec B.: Hydroxyapatite deposition on the laser modified Ti13Nb13Zr alloy. Advances in Materials Science 17(4) (2017), 5-13.10.1515/adms-2017-0017
  18. 18. Landowski M.: Influence of parameters of laser beam welding on structure of 2205 duplex stainless steel, Advances in Materials Science 19 (1) (2019), 21-31.10.2478/adms-2019-0002
  19. 19. Kusinski J., Kac S., Kopia A., Radziszewska A., Rozmus-Górnikowska M., Major B., Major L., Marczak J., Lisiecki A.: Laser modification of the materials surface layer – a review paper. Bulletin of the Polish Academy of Sciences Technical Sciences. Technical Sciences 60 4 (2012) 711-728.10.2478/v10175-012-0083-9
  20. 20. Adesina O., Popoola P., Fatoba O.: Laser Surface Modification — A Focus on the Wear Degradation of Titanium Alloy. [In] Fiber Laser, Paul M. [ed.], Intech Open, 2016, 367-381.10.5772/61737
  21. 21. Diao Y., Zhang K.: Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders. Applied Surface Science 352 (2015) 163-168.10.1016/j.apsusc.2015.04.030
  22. 22. Milovanović D. S., Petrović S. M., Shulepov M. A., Tarasenko V. F., Radak B. B., Miljanić Š. S., Trtica M. S.: Titanium alloy surface modification by excimer laser irradiation. Optics & Laser Technology 54 (2013), 419-427.10.1016/j.optlastec.2013.06.025
  23. 23. Ashan M.S., Lee M.S.: Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses. Optik - International Journal for Light and Electron Optics 126 (2012), 5979-5983.
  24. 24. Kiran Kumar K., Samuel G.L., Shunmugam M.S.: Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy. Journal of Materials Processing Technology 263 (2019), 266–275.10.1016/j.jmatprotec.2018.08.028
  25. 25. Mohazzab B.F., Jaleh B., Kakuee O., Fattah-alhosseini A.: Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance. Applied Surface Science 478 (2019), 623-635.10.1016/j.apsusc.2019.01.259
  26. 26. Kuczyńska-Zemła D., Kwaśniak P., Sotniczuk A., Spychalski M., Wieciński P., Zdunek J., Ostrowski R., Garbacz H.: Microstructure and mechanical properties of titanium subjected to direct laser interference lithography. Surface and Coatings Technology 364 (2019), 422-429.10.1016/j.surfcoat.2019.02.026
  27. 27. Sun D., Gu D., Lin K., Ma J., Chen W., Huang J., Sun X., Chu M.: Selective laser melting of titanium parts: Influence of laser process parameters on macro- and microstructures and tensile property. Powder Technology 342 (2019), 371-379.10.1016/j.powtec.2018.09.090
  28. 28. Sun J., Zhu X., Qiu L., Wang F., Yang Y., Guo L.: The microstructure transformation of selective laser melted Ti-6Al-4V alloy. Materials Today Communications 19 (2019), 277-285.10.1016/j.mtcomm.2019.02.006
  29. 29. Fan Z., Feng H.: Study on selective laser melting and heat treatment of Ti-6Al-4V alloy. Results in Physics 10 (2018), 660-664.10.1016/j.rinp.2018.07.008
  30. 30. Tong Y., Yang N., Han K., Yuan S., Zhou J., Chen X., Shi L., Li W., Xudong R.: Surface morphology of titanium alloy with monolayer microparticles under different single pulse laser Energy. Optik 174 (2018), 766-775.10.1016/j.ijleo.2018.08.077
  31. 31. Pou P., Riveiro A., del Val J., Comesaña R., Penide J., Arias-González F., Soto R., Lusquiños F., Pou J.: Laser surface texturing of Titanium for bioengineering applications. Procedia Manufacturing 13 (2017), 694-701.10.1016/j.promfg.2017.09.102
  32. 32. Gursel A.: Crack risk in Nd: YAG laser welding of Ti-6Al-4V alloy. Materials Letters 197 (2017), 233-235.10.1016/j.matlet.2016.12.112
  33. 33. Zhou L., Yuan T., Li R., Tang J., Wang G., Guo K., Yuan J.: Densification, microstructure evolution and fatigue behavior of Ti-13Nb-13Zr alloy processed by selective laser melting. Powder Technology 342 (2019), 11-23.10.1016/j.powtec.2018.09.073
  34. 34. Łatka L., Cattini A., Chicot D., Pawłowski L., Kozerski S., Petit F., Denoirjean A.: Mechanical properties of yttria- and ceria-stabilized zirconia coatings obtained by suspension plasma spraying. Journal of Thermal Spray Technology 22 (2013), 125-130.10.1007/s11666-012-9874-7
  35. 35. Pharr G. M., Oliver W. C.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 19 1 (2004), 3-20.10.1557/jmr.2004.0002
  36. 36. Rogala-Wielgus D., Majkowska-Marzec B., Bartmański M.: Wpływ stopowania laserowego z użyciem nanorurek węglowych stopu Ti13Nb13Zr do zastosowań biomedycznych na jego wybrane własności mechaniczne. Przegląd Spawalnictwa 90 7 (2018), 18-23.10.26628/ps.v90i7.935
  37. 37. Heise S., Höhlinger M., Torres Y., José J., Palacio P., Antonio J., Ortiz R., Wagener V., Virtanen S., Boccaccini A.R.: Electrophoretic deposition and characterization of chitosan / bioactive glass composite coatings on Mg alloy substrates, Electrochimica Acta 232 (2017), 456–464.10.1016/j.electacta.2017.02.081
DOI: https://doi.org/10.2478/adms-2019-0004 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 44 - 56
Published on: Apr 15, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 P. Tęczar, B. Majkowska-Marzec, M. Bartmański, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.