Have a personal or library account? Click to login
Beyond Accuracy: Cross-Linguistic Equity and Socio-Technical Dimensions of Large Language Models Cover

Beyond Accuracy: Cross-Linguistic Equity and Socio-Technical Dimensions of Large Language Models

Open Access
|Feb 2026

References

  1. Ý. Kaya, T. H. Gençtürk, and F. K. Gülađýz, “A revolutionary acute subdural hematoma detection based on two-tiered artificial intelligence model,” Ulus. Travma Acil Cerrahi Derg., vol. 29, pp. 858–871, Aug. 2023. https://doi.org/10.14744/tjtes.2023.76756
  2. T. H. Gençtürk, F. K. Gülađýz, and Ý. Kaya, “Detection and segmentation of subdural hemorrhage on head CT images,” IEEE Access, vol. 12, pp. 82235–82246, Jun. 2024. https://doi.org/10.1109/ACCESS.2024.3411932
  3. T. H. Gençtürk, F. K. Gülađýz, and Ý. Kaya, “Artificial intelligence and computed tomography imaging for midline shift detection,” Eur. Phys. J. Special Topics, vol. 234, pp. 4539–4566, Oct. 2025. https://doi.org/10.1140/epjs/s11734-025-01779-6
  4. G. Bharathi Mohan, R. Prasanna Kumar, P. Vishal Krishh, A. Keerthinathan, G. Lavanya, M. K. U. Meghana, S. Sulthana, and S. Doss, “An analysis of large language models: Their impact and potential applications,” Knowl. Inf. Syst., vol. 66, pp. 5047–5070, Sep. 2024. https://doi.org/10.1007/s10115-024-02120-8
  5. F. K. Gülađýz, “Large language models for machine learning design assistance: Prompt-driven algorithm selection and optimization in diverse supervised learning tasks,” Appl. Sci., vol. 15, Oct. 2025, Art. no. 10968. https://doi.org/10.3390/app152010968
  6. A. M. Rahmani, A. Hemmati, and S. Abbasi, “The rise of large language models: Evolution, applications, and future directions,” Eng. Rep., vol. 7, no. 9, Sep. 2025, Art. no. e70368. https://doi.org/10.1002/eng2.70368
  7. J. Chen, Z. Liu, X. Huang, C. Wu, Q. Liu, G. Jiang, Y. Pu, Y. Lei, X. Chen, X. Wang, K. Zheng, D. Lian, and E. Chen, “When large language models meet personalization: Perspectives of challenges and opportunities,” World Wide Web, vol. 27, Jun. 2024, Art. no. 42. https://doi.org/10.1007/s11280-024-01276-1
  8. J. Lin et al., “How can recommender systems benefit from large language models: A survey,” ACM Trans. Inf. Syst., vol. 43, no. 2, Art. no. 28, pp. 1–47, Jan. 2025. https://doi.org/10.1145/3678004
  9. S. Khanna and X. Li, “Invisible languages of the LLM universe,” arXiv preprint, Art. no. arXiv:2510.11557, Oct. 2025. https://doi.org/10.48550/arXiv.2510.11557
  10. R. Adams et al., “Mapping the potentials and limitations of using generative AI technologies to address socio-economic challenges in LMICs,” VeriXiv, vol. 2, Apr. 2025, Art. no. 57. https://doi.org/10.12688/verixiv.948.1
  11. A. M. Kondoro, “AI writing assistants in Tanzanian universities: Adoption trends, challenges, and opportunities,” in Proc. Fourth Workshop Intell. Interactive Writing Assistants, Albuquerque, New Mexico, US, May 2025, pp. 37–46. https://doi.org/10.18653/v1/2025.in2writing-1.4
  12. C. Wang et al., “Uncovering inequalities in new knowledge learning by large language models across different languages,” arXiv preprint, Art. no. arXiv:2503.04064, Mar. 2025. https://doi.org/10.48550/arXiv.2503.04064
  13. Z. Li, Y. Shi, Z. Liu, F. Yang, A. Payani, N. Liu, and M. Du, “Language ranker: A metric for quantifying LLM performance across high and low-resource languages,” in Proc. AAAI Conf. Artif. Intell., AAAI Press, Philadelphia, Pennsylvania, Apr. 2025, pp. 28186–28194. https://doi.org/10.1609/aaai.v39i27.35038
  14. I. Adebara, H. O. Toyin, N. T. Ghebremichael, A. Elmadany, and M. Abdul-Mageed, “Where are we? Evaluating LLM performance on African languages,” arXiv preprint, Art. no. arXiv:2502.19582, Feb. 2025. https://doi.org/10.48550/arXiv.2502.19582
  15. I. G. Ilin, “Constitutional-legal aspect of creating large language models: The problem of digital inequality and linguistic discrimination,” J. Digital Technol. Law, vol. 3, no. 1, pp. 89–107, 2025. https://doi.org/10.21202/jdtl.2025.4
  16. CULTAI Independent Expert Group, “Report of the Independent Expert Group on 2025 Artificial Intelligence and Culture,” UNESCO. [Online]. Available: https://www.unesco.org/sites/default/files/medias/fichiers/2025/09/CULTAI_Report%20of%20the%20Independent%20Expert%20Group%20on%20Artificial%20Intelligence%20and%20Culture%20%28final%20online%20version%29%201.pdf [Accessed Oct. 25, 2025].
  17. C. Zhang, M. Tao, Z. Liao, and Y. Feng, “MiLiC-Eval: Benchmarking multilingual LLMs for China's minority languages,” arXiv preprint, Art. no. arXiv:2503.01150, Jun. 2025. https://doi.org/10.48550/arXiv.2503.01150
  18. I. A. Azime et al., “Proverbeval: Exploring LLM evaluation challenges for low-resource language understanding,” arXiv preprint, Art. no. arXiv:2411.05049, Feb. 2025. https://doi.org/10.48550/arXiv.2411.05049
  19. O. Khade, S. Jagdale, A. Phaltankar, G. Takalikar, and R. Joshi, “Challenges in adapting multilingual LLMs to low-resource languages using LoRA PEFT tuning,” arXiv preprint, Art. no. arXiv:2411.18571, Nov. 2024. https://doi.org/10.48550/arXiv.2411.18571
  20. D. Bordonaba-Plou and L. M. Jreis-Navarro, “Linguistic injustice in multilingual technologies: The TenTen Corpus Family as a case study,” in Multilingual Digital Humanities, 1st ed. Routledge, 2023, pp. 129–144. https://doi.org/10.4324/9781003393696-12
  21. S. Atreja, J. Ashkinaze, L. Li, J. Mendelsohn, and L. Hemphill, “What's in a prompt? A large-scale experiment to assess the impact of prompt design on the compliance and accuracy of LLM-generated text annotations,” in Proc. Int. AAAI Conference on Web and Social Media, Copenhagen, Denmark, Jun. 2025, pp. 122–145. https://doi.org/10.1609/icwsm.v19i1.35807
  22. E. Chen, “Enhancing teaching quality through LLM: An experimental study on prompt engineering,” in Proc. 14th Int. Conf. Educ. Inf. Technol. (ICEIT), Guangzhou, China, May 2025, pp. 1–7. https://doi.org/10.1109/ICEIT64364.2025.10976127
  23. R. Khojah, F. G. de Oliveira Neto, M. Mohamad, and P. Leitner, “The impact of prompt programming on function-level code generation,” IEEE Trans. Softw. Eng., vol. 51, no. 8, pp. 2381–2395, Aug. 2025. https://doi.org/10.1109/TSE.2025.3587794
  24. Q. Ma, W. Peng, C. Yang, H. Shen, K. Koedinger, and T. Wu, “What should we engineer in prompts? Training humans in requirement-driven LLM use,” ACM Trans. Comput.-Hum. Interact., vol. 32, no. 4, pp. 1–27, Aug. 2025. https://doi.org/10.1145/3731756
  25. T. Debnath, M. N. A. Siddiky, M. E. Rahman, P. Das, A. K. Guha, M. R. Rahman, and H. M. D. Kabir, “A comprehensive survey of prompt engineering techniques in large language models,” TechRxiv, Oct. 2025. https://doi.org/10.36227/techrxiv.174140719.96375390/v1
  26. L. J. Jacobsen and K. E. Weber, “The promises and pitfalls of large language models as feedback providers: A study of prompt engineering and the quality of AI-driven feedback,” AI, vol. 6, no. 2, Feb. 2025, Art. no. 35. https://doi.org/10.3390/ai6020035
  27. B. Chen, Z. Zhang, N. Langrené, and S. Zhu, “Unleashing the potential of prompt engineering for large language models,” Patterns, vol. 6, no. 6, Jun. 2025, Art. no. 101260. https://doi.org/10.1016/j.patter.2025.101260
  28. T. S. Almeida, G. K. Bonás, J. G. A. Santos, H. Abonizio, and R. Nogueira, “TiEBe: Tracking language model recall of notable worldwide events through time,” arXiv preprint, Art. no. arXiv:2501.07482, May 2025. https://doi.org/10.48550/arXiv.2501.07482
  29. Q. Peng, Y. Chai, and X. Li, “HumanEval-XL: A multilingual code generation benchmark for cross-lingual natural language generalization,” in Proc. 2024 Joint Int. Conf. Comput. Linguist., Lang. Resour. Eval. (LREC-COLING 2024), Torino, Italia, May 2024, pp. 8383–8394. [Online]. Available: https://aclanthology.org/2024.lrec-main.735/
  30. M. Chen et al., “Evaluating large language models trained on code,” arXiv preprint, Art. no. arXiv:2107.03374, Jul. 2021. https://doi.org/10.48550/arXiv.2107.03374
  31. Wikimedia Foundation, “List of Wikipedias,” Meta-Wiki. [Online]. Available: https://meta.wikimedia.org/wiki/List_of_Wikipedias [Accessed Oct. 25, 2025].
  32. United Nations Development Programme, “Human development report 2025: A matter of choice: People and possibilities in the age of AI,” United Nations Development Programme, New York. [Online]. Available: https://hdr.undp.org/content/human-development-report-2025 [Accessed Oct. 25, 2025].
  33. Hugging Face, “deepseek-coder-6.7b-instruct,” Hugging Face. [Online]. Available: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct [Accessed Oct. 25, 2025].
  34. B. Hui et al., “Qwen2.5-Coder technical report,” arXiv preprint, Art. no. arXiv:2409.12186, Sep. 2024. https://doi.org/10.48550/arXiv.2409.12186
  35. Hugging Face, “Llama-3.1-8B-Instruct,” Hugging Face. [Online]. Available: https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct [Accessed Oct. 25, 2025].
  36. OpenAI, “GPT-5 system card,” OpenAI. [Online]. Available: https://cdn.openai.com/gpt-5-system-card.pdf [Accessed Oct. 25, 2025].
  37. DeepSeek, “Quick start – The temperature parameter,” DeepSeek API Docs. [Online]. Available: https://api-docs.deepseek.com/quick_start/parameter_settings [Accessed Oct. 25, 2025].
  38. C. Arora, A. I. Sayeed, S. Licorish, F. Wang, and C. Treude, “Optimizing large language model hyperparameters for code generation,” arXiv preprint, Art. no. arXiv:2408.10577, Aug. 2024. https://doi.org/10.48550/arXiv.2408.10577
  39. S. Ouyang, J. M. Zhang, M. Harman, and M. Wang, “An empirical study of the non-determinism of ChatGPT in code generation,” arXiv preprint, Art. no. arXiv:2308.02828, Oct. 2024. https://doi.org/10.48550/arXiv.2308.02828
  40. DeepSeek, “DeepSeek Coder,” GitHub. [Online]. Available: https://github.com/deepseek-ai/DeepSeek-Coder [Accessed Oct. 25, 2025].
  41. DeepSeek, “DeepSeek Coder: Let the code write itself,” DeepSeek Coder Website. [Online]. Available: https://deepseekcoder.github.io/ [Accessed Oct. 25, 2025].
  42. D. Guo et al., “DeepSeek-Coder: When the large language model meets programming – The rise of code intelligence,” arXiv preprint, Art. no. arXiv:2401.14196, Jan. 2024. https://doi.org/10.48550/arXiv.2401.14196
  43. A. Yang et al., “Qwen 2.5 technical report,” arXiv preprint, Art. no. arXiv:2412.15115, Dec. 2024. https://doi.org/10.48550/arXiv.2412.15115
  44. Hugging Face, “Llama 3.1 – 405B, 70B & 8B with multilinguality and long context,” Hugging Face Blog. [Online]. Available: https://huggingface.co/blog/llama31 [Accessed Oct. 25, 2025].
  45. Meta, “meta-llama/llama3,” GitHub. [Online]. Available: https://github.com/meta-llama/llama3 [Accessed Oct. 25, 2025].
  46. OpenAI, “Introducing GPT-5,” OpenAI. [Online]. Available: https://openai.com/tr-TR/index/introducing-gpt-5/ [Accessed Aug. 7, 2025].
  47. T. Brown et al., “Language models are few-shot learners,” in Proc. Adv. Neural Inf. Process. Syst. 33 (NeurIPS 2020), Virtual-only conference, Art. no. 159, Dec. 2020, pp. 1877–1901. [Online]. Available: https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
  48. J. Wei et al., “Chain-of-thought prompting elicits reasoning in large language models,” in Adv. Neural Inf. Process. Syst., Art. no. 1800, Nov. 2022, pp. 24824–24837. [Online]. Available: https://dl.acm.org/doi/10.5555/3600270.3602070
  49. Q. Dong et al., “A survey on in-context learning,” arXiv preprint, Art. no. arXiv:2301.00234, Oct. 2024. https://doi.org/10.48550/arXiv.2301.00234
  50. Y. Li, “A practical survey on zero-shot prompt design for in-context learning,” in Proc. 14th Int. Conf. Recent Advances in Natural Language Processing (RANLP), Varna, Bulgaria, Sep. 2023, pp. 641–647. https://doi.org/10.26615/978-954-452-092-2_069
  51. J. Austin et al., “Program synthesis with large language models,” arXiv preprint, Art. no. arXiv:2108.07732, Aug. 2021. https://doi.org/10.48550/arXiv.2108.07732
  52. A. Lewkowycz et al., “Solving quantitative reasoning problems with language models,” in Adv. Neural Inf. Process. Syst., Art. no. 278, Nov. 2022, pp. 3843–3857. [Online]. Available: https://dl.acm.org/doi/10.5555/3600270.3600548
  53. H. Zhou, A. Nova, H. Larochelle, A. Courville, B. Neyshabur, and H. Sedghi, “Teaching algorithmic reasoning via in-context learning,” arXiv preprint, Art. no. arXiv:2211.09066, Nov. 2022. https://doi.org/10.48550/arXiv.2211.09066
  54. H. Xia, C. T. Leong, W. Wang, Y. Li, and W. Li, “Tokenskip: Controllable chain-of-thought compression in LLMs,” arXiv preprint, Art. no. arXiv:2502.12067, Sep. 2025. https://doi.org/10.48550/arXiv.2502.12067
  55. M. Franke, “Sheet 6.3: Decoding strategies,” Pragmatic Natural Language Generation with Neural Language Models Web Site. [Online]. Available: https://michael-franke.github.io/npNLG/06-LSTMs/06d-decoding-GPT2.html [Accessed Oct. 25, 2025].
  56. Hugging Face, “Generation strategies – Transformers documentation,” Hugging Face. [Online]. Available: https://huggingface.co/docs/transformers/en/generation_strategies [Accessed Oct. 25, 2025].
  57. Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of flaky tests,” in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Software Eng., Hong Kong, China, Nov. 2014, pp. 643–653. https://doi.org/10.1145/2635868.2635920
  58. Wikipedia, “List of languages by total number of speakers,” Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/List_of_languages_by_total_number_of_speakers [Accessed Oct. 25, 2025].
  59. D. M. Eberhard, G. F. Simons and C. D. Fennig, Eds., Ethnologue: Languages of the World, 28th ed. SIL International, 2025. [Online]. Available: https://www.ethnologue.com/insights/ethnologue200/ [Accessed Oct. 25, 2025].
  60. P. Bala, “The impact of mobile broadband and internet bandwidth on human development – A comparative analysis of developing and developed countries,” J. Knowl. Econ., vol. 15, pp. 16419–16453, Jan. 2024. https://doi.org/10.1007/s13132-023-01711-0
  61. World Bank, “Chapter 1 – Digital adoption: Accelerating post-pandemic, yet a widening divide,” in Digital Progress and Trends Report 2023, World Bank. [Online]. Available: https://www.worldbank.org/en/publication/digital-progress-and-trends-report?utm_source=https://www.google.com/search?#Report_chapters [Accessed Oct. 25, 2025].
  62. World Bank, “Chapter 5 – Artificial intelligence: Revolutionary potential and huge uncertainties,” in Digital Progress and Trends Report 2023, World Bank. [Online]. Available: https://www.worldbank.org/en/publication/digital-progress-and-trends-report?utm_source=https://www.google.com/search?#Report_chapters [Accessed Oct. 25, 2025].
  63. A. Daupare and G. Jçkabsons, “Benchmarking 24 large language models for automated multiple-choice question generation in Latvian,” Applied Computer Systems, vol. 30, no. 1, pp. 85–90, May 2025. https://doi.org/10.2478/acss-2025-0010
DOI: https://doi.org/10.2478/acss-2026-0001 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 1 - 16
Submitted on: Nov 20, 2025
|
Accepted on: Feb 2, 2026
|
Published on: Feb 18, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2026 Fidan Kaya Gülađýz, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.

Volume 31 (2026): Issue 1 (January 2026)