References
- G. Zhu et al., “A lightweight encoder–decoder network for automatic pavement crack detection,” Comput.-Aided Civ. Infrastruct. Eng., vol. 39, no. 12, pp. 1743–1765, Jun. 2024. https://doi.org/10.1111/mice.13103
- Z. Qu, C. Y. Wang, S. Y. Wang, and F. R. Ju, “A method of hierarchical feature fusion and connected attention architecture for pavement crack detection,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9, pp. 16038–16047, Feb. 2022. https://doi.org/10.1109/TITS.2022.3147669
- H. Feng et al., “GCN-based pavement crack detection using mobile LiDAR point clouds,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 11052–11061, Aug. 2021. https://doi.org/10.1109/TITS.2021.3099023
- M. A. M. Khan, S. H. Kee, A. S. K. Pathan, and A. A. Nahid, “Image processing techniques for concrete crack detection: A scientometrics literature review,” Remote Sens., vol. 15, no. 9, May 2023, Art. no. 2400. https://doi.org/10.3390/rs15092400
- X. Xiang, Z. Wang, and Y. Qiao, “An improved YOLOv5 crack detection method combined with transformer,” IEEE Sens. J., vol. 22, no. 14, pp. 14328–14335, Jun. 2022. https://doi.org/10.1109/JSEN.2022.3181003
- S. Xiao et al., “Pavement crack detection with hybrid-window attentive vision transformers,” Int. J. Appl. Earth Obs. Geoinf., vol. 116, Feb. 2023, Art. no. 103172. https://doi.org/10.1016/j.jag.2022.103172
- B. Xu and C. Liu, “Pavement crack detection algorithm based on generative adversarial network and convolutional neural network under small samples,” Measurement, vol. 196, Jun. 2022, Art. no. 111219. https://doi.org/10.1016/j.measurement.2022.111219
- V. P. Golding, Z. Gharineiat, H. S. Munawar, and F. Ullah, “Crack detection in concrete structures using deep learning,” Sustainability, vol. 14, no. 13, Jul. 2022, Art. no. 8117. https://doi.org/10.3390/su14138117
- H. Li, J. Zong, J. Nie, Z. Wu, and H. Han, “Pavement crack detection algorithm based on densely connected and deeply supervised network,” IEEE Access, vol. 9, pp. 11835–11842, Jan. 2021. https://doi.org/10.1109/ACCESS.2021.3050401
- A. Mohan and S. Poobal, “Crack detection using image processing: A critical review and analysis,” Alex. Eng. J., vol. 57, no. 2, pp. 787–798, Jun. 2018. https://doi.org/10.1016/j.aej.2017.01.020
- R. Sharma, D. A. Potnis, and V. Chourasia, “Review of image-based concrete crack detection,” in Proc. 2021 Int. Conf. Adv. Technol., Manage. Educ. (ICATME), Bhopal, India, Jan. 2021.
- Q. Zou, Y. Cao, Q. Li, Q. Mao, and S. Wang, “CrackTree: Automatic crack detection from pavement images,” Pattern Recognit. Lett., vol. 33, no. 3, pp. 227–238, Feb. 2012. https://doi.org/10.1016/j.patrec.2011.11.004
- Y.-A. Hsieh and Y. J. Tsai, “Machine learning for crack detection: Review and model performance comparison,” J. Comput. Civ. Eng., vol. 34, no. 5, Jul. 2020, Art. no. 04020038. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000918
- N. H. T. Nguyen, S. Perry, D. Bone, H. T. Le, and T. T. Nguyen, “Two-stage convolutional neural network for road crack detection and segmentation,” Expert Syst. Appl., vol. 186, Dec. 2021, Art. no. 115718. https://doi.org/10.1016/j.eswa.2021.115718
- J. Li, C. Yuan, X. Wang, G. Chen, and G. Ma, “Semi-supervised crack detection using segment anything model and deep transfer learning,” Autom. Constr., vol. 170, Feb. 2025, Art. no. 105899. https://doi.org/10.1016/j.autcon.2024.105899
- T. Han, D. Jiang, Q. Zhao, L. Wang, and K. Yin, “Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery,” Trans. Inst. Meas. Control., vol. 40, pp. 2681–2693, 2018. https://doi.org/10.1177/0142331217708242
- Q. Yuan, Y. Shi, and M. Li, “A review of computer vision-based crack detection methods in civil infrastructure: Progress and challenges,” Remote Sens., vol. 16, no. 16, Aug. 2024, Art. no. 2910. https://doi.org/10.3390/rs16162910
- H. Kaveh and R. Alhajj, “Recent advances in crack detection technologies for structures: A survey of 2022–2023 literature,” Front. Built Environ., vol. 10, Jul. 2024, Art. no. 1321634. https://doi.org/10.3389/fbuil.2024.1321634
- S. Duan et al., “Tunnel lining crack detection model based on improved YOLOv5,” Tunn. Undergr. Space Technol., vol. 147, May 2024, Art. no. 105713. https://doi.org/10.1016/j.tust.2024.105713
- A. Hussain, K. N. Qureshi, R. W. Anwar, and A. Aslam, “A novel SCD11 CNN model performance evaluation with inception V3, VGG16 and ResNet50 using surface crack dataset,” in Proc. 2024 2nd Int. Conf. Unmanned Vehicle Syst. (UVS), Oman, Feb. 2024, pp. 1–7. https://doi.org/10.1109/UVS59630.2024.10467149
- A. Hussain and A. Aslam, “Ensemble-based approach using inception V2, VGG-16, and Xception convolutional neural networks for surface cracks detection,” J. Appl. Res. Technol., vol. 22, no. 4, pp. 586–598, Aug. 2024. https://doi.org/10.22201/icat.24486736e.2024.22.4.2431
- M. Bhardwaj, N. U. Khan, and V. Baghel, “Fuzzy C-Means clustering based selective edge enhancement scheme for improved road crack detection,” Eng. Appl. Artif. Intell., vol. 136, Oct. 2024, Art. no. 108955. https://doi.org/10.1016/j.engappai.2024.108955
- N. Jayanthi, T. Ghosh, R. K. Meena, and M. Verma, “Length and width of low-light, concrete hairline crack detection and measurement using image processing method,” Asian J. Civ. Eng., vol. 25, no. 3, pp. 2705–2714, Dec. 2024. https://doi.org/10.1007/s42107-023-00939-0
- S. Matarneh, F. Elghaish, F. P. Rahimian, E. Abdellatef, and S. Abrishami, “Evaluation and optimisation of pre-trained CNN models for asphalt pavement crack detection and classification,” Autom. Constr., vol. 160, Apr. 2024, Art. no. 105297. https://doi.org/10.1016/j.autcon.2024.105297