Have a personal or library account? Click to login
CrackNet-VGG: A Deep Learning Framework for Automated Detection of Surface Cracks in Concrete Structures Cover

CrackNet-VGG: A Deep Learning Framework for Automated Detection of Surface Cracks in Concrete Structures

Open Access
|Dec 2025

References

  1. G. Zhu et al., “A lightweight encoder–decoder network for automatic pavement crack detection,” Comput.-Aided Civ. Infrastruct. Eng., vol. 39, no. 12, pp. 1743–1765, Jun. 2024. https://doi.org/10.1111/mice.13103
  2. Z. Qu, C. Y. Wang, S. Y. Wang, and F. R. Ju, “A method of hierarchical feature fusion and connected attention architecture for pavement crack detection,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9, pp. 16038–16047, Feb. 2022. https://doi.org/10.1109/TITS.2022.3147669
  3. H. Feng et al., “GCN-based pavement crack detection using mobile LiDAR point clouds,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 11052–11061, Aug. 2021. https://doi.org/10.1109/TITS.2021.3099023
  4. M. A. M. Khan, S. H. Kee, A. S. K. Pathan, and A. A. Nahid, “Image processing techniques for concrete crack detection: A scientometrics literature review,” Remote Sens., vol. 15, no. 9, May 2023, Art. no. 2400. https://doi.org/10.3390/rs15092400
  5. X. Xiang, Z. Wang, and Y. Qiao, “An improved YOLOv5 crack detection method combined with transformer,” IEEE Sens. J., vol. 22, no. 14, pp. 14328–14335, Jun. 2022. https://doi.org/10.1109/JSEN.2022.3181003
  6. S. Xiao et al., “Pavement crack detection with hybrid-window attentive vision transformers,” Int. J. Appl. Earth Obs. Geoinf., vol. 116, Feb. 2023, Art. no. 103172. https://doi.org/10.1016/j.jag.2022.103172
  7. B. Xu and C. Liu, “Pavement crack detection algorithm based on generative adversarial network and convolutional neural network under small samples,” Measurement, vol. 196, Jun. 2022, Art. no. 111219. https://doi.org/10.1016/j.measurement.2022.111219
  8. V. P. Golding, Z. Gharineiat, H. S. Munawar, and F. Ullah, “Crack detection in concrete structures using deep learning,” Sustainability, vol. 14, no. 13, Jul. 2022, Art. no. 8117. https://doi.org/10.3390/su14138117
  9. H. Li, J. Zong, J. Nie, Z. Wu, and H. Han, “Pavement crack detection algorithm based on densely connected and deeply supervised network,” IEEE Access, vol. 9, pp. 11835–11842, Jan. 2021. https://doi.org/10.1109/ACCESS.2021.3050401
  10. A. Mohan and S. Poobal, “Crack detection using image processing: A critical review and analysis,” Alex. Eng. J., vol. 57, no. 2, pp. 787–798, Jun. 2018. https://doi.org/10.1016/j.aej.2017.01.020
  11. R. Sharma, D. A. Potnis, and V. Chourasia, “Review of image-based concrete crack detection,” in Proc. 2021 Int. Conf. Adv. Technol., Manage. Educ. (ICATME), Bhopal, India, Jan. 2021.
  12. Q. Zou, Y. Cao, Q. Li, Q. Mao, and S. Wang, “CrackTree: Automatic crack detection from pavement images,” Pattern Recognit. Lett., vol. 33, no. 3, pp. 227–238, Feb. 2012. https://doi.org/10.1016/j.patrec.2011.11.004
  13. Y.-A. Hsieh and Y. J. Tsai, “Machine learning for crack detection: Review and model performance comparison,” J. Comput. Civ. Eng., vol. 34, no. 5, Jul. 2020, Art. no. 04020038. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000918
  14. N. H. T. Nguyen, S. Perry, D. Bone, H. T. Le, and T. T. Nguyen, “Two-stage convolutional neural network for road crack detection and segmentation,” Expert Syst. Appl., vol. 186, Dec. 2021, Art. no. 115718. https://doi.org/10.1016/j.eswa.2021.115718
  15. J. Li, C. Yuan, X. Wang, G. Chen, and G. Ma, “Semi-supervised crack detection using segment anything model and deep transfer learning,” Autom. Constr., vol. 170, Feb. 2025, Art. no. 105899. https://doi.org/10.1016/j.autcon.2024.105899
  16. T. Han, D. Jiang, Q. Zhao, L. Wang, and K. Yin, “Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery,” Trans. Inst. Meas. Control., vol. 40, pp. 2681–2693, 2018. https://doi.org/10.1177/0142331217708242
  17. Q. Yuan, Y. Shi, and M. Li, “A review of computer vision-based crack detection methods in civil infrastructure: Progress and challenges,” Remote Sens., vol. 16, no. 16, Aug. 2024, Art. no. 2910. https://doi.org/10.3390/rs16162910
  18. H. Kaveh and R. Alhajj, “Recent advances in crack detection technologies for structures: A survey of 2022–2023 literature,” Front. Built Environ., vol. 10, Jul. 2024, Art. no. 1321634. https://doi.org/10.3389/fbuil.2024.1321634
  19. S. Duan et al., “Tunnel lining crack detection model based on improved YOLOv5,” Tunn. Undergr. Space Technol., vol. 147, May 2024, Art. no. 105713. https://doi.org/10.1016/j.tust.2024.105713
  20. A. Hussain, K. N. Qureshi, R. W. Anwar, and A. Aslam, “A novel SCD11 CNN model performance evaluation with inception V3, VGG16 and ResNet50 using surface crack dataset,” in Proc. 2024 2nd Int. Conf. Unmanned Vehicle Syst. (UVS), Oman, Feb. 2024, pp. 1–7. https://doi.org/10.1109/UVS59630.2024.10467149
  21. A. Hussain and A. Aslam, “Ensemble-based approach using inception V2, VGG-16, and Xception convolutional neural networks for surface cracks detection,” J. Appl. Res. Technol., vol. 22, no. 4, pp. 586–598, Aug. 2024. https://doi.org/10.22201/icat.24486736e.2024.22.4.2431
  22. M. Bhardwaj, N. U. Khan, and V. Baghel, “Fuzzy C-Means clustering based selective edge enhancement scheme for improved road crack detection,” Eng. Appl. Artif. Intell., vol. 136, Oct. 2024, Art. no. 108955. https://doi.org/10.1016/j.engappai.2024.108955
  23. N. Jayanthi, T. Ghosh, R. K. Meena, and M. Verma, “Length and width of low-light, concrete hairline crack detection and measurement using image processing method,” Asian J. Civ. Eng., vol. 25, no. 3, pp. 2705–2714, Dec. 2024. https://doi.org/10.1007/s42107-023-00939-0
  24. S. Matarneh, F. Elghaish, F. P. Rahimian, E. Abdellatef, and S. Abrishami, “Evaluation and optimisation of pre-trained CNN models for asphalt pavement crack detection and classification,” Autom. Constr., vol. 160, Apr. 2024, Art. no. 105297. https://doi.org/10.1016/j.autcon.2024.105297
DOI: https://doi.org/10.2478/acss-2025-0020 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 187 - 194
Submitted on: Jul 28, 2025
|
Accepted on: Nov 27, 2025
|
Published on: Dec 23, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Saiqa Murtaza, Muhammad Imran, Muhammad Rizwan Rashid Rana, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.