Have a personal or library account? Click to login
Comparative Analysis of Pipeline Architecture, Resource Deployment, and Configuration for Cassandra API-Compatible Databases: ScyllaDB vs. Cassandra Cover

Comparative Analysis of Pipeline Architecture, Resource Deployment, and Configuration for Cassandra API-Compatible Databases: ScyllaDB vs. Cassandra

Open Access
|Dec 2025

References

  1. N. Suneja, “Scylladb optimizes database architecture to maximize hardware performance,” IEEE Software, vol. 36, no. 4, pp. 96–100, Jun. 2019. https://doi.org/10.1109/MS.2019.2909854
  2. A. Wahid and K. Kashyap, “Cassandra – a distributed database system: An overview,” in Emerging Technologies in Data Mining and Information Security – Proceedings of IEMIS 2018, 2019, pp. 519–526. https://doi.org/10.1007/978-981-13-1951-8_47
  3. M. R. Pratama and D. S. Kusumo, “Implementation of continuous integration and continuous delivery (ci/cd) on automatic performance testing,” in 2021 9th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, Aug. 2021, pp. 230–235. https://doi.org/10.1109/ICoICT52021.2021.9527496
  4. J. Kuhlenkamp, M. Klems, and O. Röss, “Benchmarking scalability and elasticity of distributed database systems,” Proceedings of the VLDB Endowment, vol. 7, no. 12, pp. 1219–1230, Aug. 2014. https://doi.org/10.14778/2732977.2732995
  5. A. Mahgoub, S. Ganesh, F. Meyer, A. Grama, and S. Chaterji, “Suitability of NoSQL systems – Cassandra and ScyllaDB — for IoT workloads,” in 2017 9th International Conference on Communication Systems and Networks (COMSNETS), Bengaluru, India, Jan. 2017, pp. 476–479. https://doi.org/10.1109/COMSNETS.2017.7945437
  6. K. Anusha, N. Rajesh, M. Kavitha, and N. Ravinder, “Comparative study of MongoDB vs Cassandra in big data analytics,” in 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, May 2021, pp. 1831–1835. https://doi.org/10.1109/ICCMC51019.2021.9418441
  7. S. Shirinbab, L. Lundberg, and E. Casalicchio, “Performance evaluation of container and virtual machine running Cassandra workload,” in 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech), Rabat, Morocco, Oct. 2017, pp. 1–8. https://doi.org/10.1109/CloudTech.2017.8284700
  8. E. S. Pramukantoro, D. P. Kartikasari, and R. A. Siregar, “Performance evaluation of MongoDB, Cassandra, and HBase for heterogenous IoT data storage,” in 2019 2nd International Conference on Applied Information Technology and Innovation (ICAITI), Denpasar, Indonesia, Sep. 2019, pp. 203–206. https://doi.org/10.1109/ICAITI48442.2019.8982159
  9. N. B. Seghier and O. Kazar, “Performance benchmarking and comparison of NoSQL databases: Redis vs MongoDB vs Cassandra using YCSB tool,” in 2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI), Tebessa, Algeria, Sep. 2021, pp. 1–6. https://doi.org/10.1109/ICRAMI52622.2021.9585956
  10. X. Cui and W. Chen, “Performance comparison test of HBase and Cassandra based on YCSB,” in 2021 IEEE/ACIS 19th International Conference on Computer and Information Science (ICIS), Shanghai, China, Jun. 2021, pp. 70–77. https://doi.org/10.1109/ICIS51600.2021.9516864
  11. V. Abramova, J. Bernardino, and P. Furtado, “Testing cloud benchmark scalability with Cassandra,” in 2014 IEEE World Congress on Services, Anchorage, AK, USA, Sep. 2014, pp. 434–441. https://doi.org/10.1109/SERVICES.2014.81
  12. D. Krishnamurthy and D. Bermbach, Cloud Service Benchmarking: Measuring Performance, Latency, and Cost. Springer, 2017.
  13. M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems. O’Reilly Media, Inc., 2017.
  14. J. Carpenter and E. Hewitt, Cassandra: The Definitive Guide, 3rd ed. O’Reilly Media, Inc., 2020.
  15. Y. Brikman, Terraform: Up and Running: Writing Infrastructure as Code. O’Reilly Media, Inc., 2017.
  16. “Benchmarking databases 101: Part 1 what are benchmarking and performance metrics?” [Online]. Available: https://severalnines.com/blog/benchmarking-databases-101-part-1/
  17. “Scylla. Scylladb vs. apache cassandra: A technical comparison,” [Online]. Available: https://www.scylladb.com/scylladb-vs-cassandra/
  18. “Scylla compaction.” [Online]. Available: https://docs.scylladb.com/stable/kb/compaction.html
  19. “ScyllaDB shard-per-core architecture.” [Online]. Available: https://www.scylladb.com/product/technology/shard-per-core-architecture/
  20. “Sstable.” [Online]. Available: https://www.scylladb.com/glossary/sstable/
  21. “What is database benchmarking?” [Online]. Available: https://benchant.com/blog/database-benchmarking
  22. S. Nandgaonkar and V. Khatavkar, “CI-CD pipeline for content releases,” in 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT), Bangalore, India, Oct. 2022, pp. 1–4. https://doi.org/10.1109/GCAT55367.2022.9972129
  23. “How to benchmark database performance and ObjectBox.” [Online]. Available: https://objectbox.io/how-to-benchmark-database-performance-and-objectbox/
  24. “ScyllaDB users.” [Online]. Available: https://www.scylladb.com/users/
  25. “DB-engines ranking.” [Online]. Available: https://db-engines.com/en/ranking
  26. B. Medjahed, M. Ouzzani, and A. Elmagarmid, “Generalization of ACID properties.” In Encyclopedia of Database Systems, L. Liu, M.T. Özsu, Eds. Springer, Boston, MA., 2009. https://doi.org/10.1007/978-0-387-39940-9_736
  27. “Change data capture.” [Online]. Available: https://developer.salesforce.com/docs/atlas.en-us.change_data_capture.meta/change_data_capture/cdc_intro.htm
  28. “How data is written.” [Online]. Available: https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlHowDataWritten.html
  29. B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking cloud serving systems with YCSB,” in SoCC ‘10: Proceedings of the 1st ACM symposium on Cloud computing, Jun. 2010, pp. 143–154. https://doi.org/10.1145/1807128.1807152
  30. “YCSB.” [Online]. Available: https://www.scylladb.com/glossary/ycsb/
  31. S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson, A. Fuchs, and B. Rinaldi “YCSB++: Benchmarking and performance debugging advanced features in scalable table stores,” in SOCC ‘11: Proceedings of the 2nd ACM Symposium on Cloud Computing, Oct. 2011, Art. no. 9. https://doi.org/10.1145/2038916.2038925
  32. “YCSB – Yahoo! Cloud serving benchmark.” [Online]. Available: https://hse-project.github.io/apps/ycsb/
  33. “Running a workload.” [Online]. Available: https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload
  34. “Amazon EC2 instance types.” [Online]. Available: https://aws.amazon.com/ec2/instance-types/
  35. “Amazon EC2 security groups.” [Online]. Available: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
  36. “Configuration of your 5-nodes cluster.” [Online]. Available: https://maelfabien.github.io/bigdata/EC2_Cassandra/
  37. “ScyllaDB administration guide.” [Online]. Available: https://opensource.docs.scylladb.com/stable/operating-scylla/
  38. “Amazon machine images (AMI).” [Online]. Available: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
  39. B. Beach, “CloudWatch metrics and dimensions,” in Pro Powershell for Amazon Web Services: DevOps for the AWS Cloud. Springer, 2014, pp. 273–278. https://doi.org/10.1007/978-1-4302-6452-1_16
  40. “AWS Lambda developer guide – programming model (Python).” [Online]. Available: https://docs.aws.amazon.com/lambda/latest/dg/lambda-python.html
  41. “Lambda with Pandas.” [Online]. Available: https://korniichuk.medium.com/lambda-with-pandas-fd81aa2ff25e
  42. “Amazon Athena.” [Online]. Available: https://aws.amazon.com/de/athena/
  43. “AWS glue.” [Online]. Available: https://aws.amazon.com/glue/
  44. “Connect to Amazon Athena from tableau.” [Online]. Available: https://tarsolutions.co.uk/blog/connect-to-athena-from-tableau/
  45. “Tableau connectors.” [Online]. Available: https://exchange.tableau.com/connectors
  46. “Tableau support and drivers.” [Online]. Available: https://www.tableau.com/support/drivers
  47. I. Tyshchenko, “Scylla Cassandra benchmarking pipeline.” [Online]. Available: https://github.com/FairyFox5700/
  48. H. Singh, “AWS pricing and cost management,” in Practical Machine Learning with AWS: Process, Build, Deploy, and Production Your Models Using AWS. O’Reilly Media, Nov. 2020, pp. 29–44. https://doi.org/10.1007/978-1-4842-6222-1_2
  49. “AWS pricing calculator: Calculate AWS cost like the pros.” [Online]. Available: https://spot.io/resources/aws-cost-optimization/aws-pricing-calculator-calculate-aws-cost-like-the-pros/
DOI: https://doi.org/10.2478/acss-2025-0019 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 174 - 186
Submitted on: Apr 15, 2025
Accepted on: Nov 21, 2025
Published on: Dec 12, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Iryna Tyshchenko, Rand Kouatly, Talha Ali Khan, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.