Have a personal or library account? Click to login
Accelerated Planar Development of Convex Free-form Mesh Patches Using a Variable Step-size Energy Dissipation Approach Cover

Accelerated Planar Development of Convex Free-form Mesh Patches Using a Variable Step-size Energy Dissipation Approach

By: Erdem Yavuz and  Rıfat Yazıcı  
Open Access
|Nov 2025

References

  1. C. C. L. Wang, Geometric Modeling and Reasoning of Human-Centered Freeform Products. London: Springer-Verlag, 2013. https://doi.org/10.1007/978-1-4471-4360-4
  2. M. P. Carmo, Differential Geometry of Curves and Surfaces. Englewood Cliffs: Prentice-Hall, 1976.
  3. H. S. Abdul-Rahman, S. Lou, W. Zeng, X. Jiang, and P. J. Scott, “Freeform texture representation and characterisation based on triangular mesh projection techniques,” Measurement, vol. 92, pp. 172–182, Oct. 2016. https://doi.org/10.1016/j.measurement.2016.06.005
  4. P. Azariadis and N. Sapidis, “Planar development of digital free-form surfaces,” in Advances in Geometric Modeling, M. Sarfraz, Ed. Wiley, Jan. 2004. https://doi.org/10.1002/0470860448.ch2
  5. M. Eigensatz, M. Kilian, A. Schiftner, N. J. Mitra, H. Pottmann, and M. Pauly, “Paneling architectural freeform surfaces,” ACM Trans. Graph., vol. 29, no. 4, Jul. 2010, Art. no. 45. https://doi.org/10.1145/1833351.1778782
  6. Y. J. Yang, W. Zeng, and X. X. Meng, “Conformal freeform surfaces,” Computer-Aided Design, vol. 81, pp. 48–60, Dec. 2016. https://doi.org/10.1016/j.cad.2016.09.003
  7. W. Zhan, “Research on pattern flattening for parts with complex surfaces,” M.S. thesis, Nanjing Univ. Aeronautics & Astronautics, Nanjing, China, 2007.
  8. R. Xu, X. Liu, and J. Chen, “Development and status of surfaces flattening method,” Die and Mould Technology, no. 5, pp. 15–18, 2002.
  9. R. Sawhney and K. Crane, “Boundary first flattening,” ACM Trans. Graph. (ToG), vol. 37, no. 1, pp. 1–14, Dec. 2017. https://doi.org/10.1145/3132705
  10. Q. Zhang, J. Hou, Y. Qian, Y. Zeng, J. Zhang, and Y. He, “Flattening-net: Deep regular 2D representation for 3D point cloud analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 8, pp. 9726–9742, Feb. 2023. https://doi.org/10.1109/TPAMI.2023.3244828
  11. M. Xiao, Z. Qi, and H. Shi, “The surface flattening based on mechanics revision of the tunnel 3D point cloud data from laser scanner,” Procedia Computer Science, vol. 131, pp. 1229–1237, 2018. https://doi.org/10.1016/j.procs.2018.04.335
  12. X. Ji, G. Wen, H. Gong, R. Sun, and H. Li, “Three-dimensional wound flattening method for mapping skin mechanical properties based on finite element method,” Comput. Methods Biomech. Biomed. Engin., vol. 27, no. 2, pp. 237–250, Feb. 2023. https://doi.org/10.1080/10255842.2023.2183347
  13. P. Zheng, Q. Liu, J. Lou, C. Lian, and D. Lin, “A free-form surface flattening algorithm that minimizes geometric deformation energy,” IET Image Processing, vol. 16, no. 9, pp. 2544 –2556, Jul. 2022. https://doi.org/10.1049/ipr2.12508
  14. B. Yi, Y. Yang, R. Zheng, X. Li, and M. Yi, “Triangulated surface flattening based on the physical shell model,” J. Mech. Sci. Technol., vol. 32, pp. 2163–2171, May 2018. https://doi.org/10.1007/s12206-018-0425-0
  15. J. McCartney, B. K. Hinds, B. L. Seow, and D. Gong, “An energy based model for the flattening of woven fabrics,” J. Mater. Process. Technol., vol. 107, no. 1–3, pp. 312–318, Nov. 2000. https://doi.org/10.1016/S0924-0136(00)00694-4
  16. C. H. Lee and H. Huh, “Blank design and strain estimates for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation,” J. Mater. Process. Technol., vol. 82, no. 1–3, pp. 145–155, 1998. https://doi.org/10.1016/S0924-0136(98)00034-X
  17. J. Lan, X. Dong, and Z. Li, “Blank and strain estimates for sheet metal forming processes by an inverse approach of FE,” J. Plast. Eng., vol. 8, pp. 60–62, 2001.
  18. K. Chung and O. Richmond, “Ideal forming–I. Homogeneous deformation with minimum plastic work,” Int. J. Mech. Sci., vol. 34, no. 7, pp. 575–591, Jul. 1992. https://doi.org/10.1016/0020-7403(92)90032-C
  19. K. Chung and O. Richmond, “Ideal forming–II. Sheet forming with optimum deformation,” Int. J. Mech. Sci., vol. 34, no. 8, pp. 617–633, Aug. 1992. https://doi.org/10.1016/0020-7403(92)90059-P
  20. K. Chung, J. W. Yoon, and O. Richmond, “Ideal sheet forming with frictional constraints,” Int. J. Plasticity, vol. 16, no. 6, pp. 595–610, May 2000. https://doi.org/10.1016/S0749-6419(99)00068-6
  21. W. Chung, S. H. Kim, and K. H. Shin, “A method for planar development of 3D surfaces in shoe pattern design,” J. Mech. Sci. Technol., vol. 22, no. 8, pp. 1510–1519, 2008. https://doi.org/10.1007/s12206-008-0609-0
  22. Q. L. Zhang and X. Q. Luo, “Finite element method for developing arbitrary surfaces to flattened forms,” Finite Elem. Anal. Des., vol. 39, no. 10, pp. 977–984, Jul. 2003. https://doi.org/10.1016/S0168-874X(02)00142-7
  23. J. W. Yoon, K. Chung, F. Pourboghrat, and F. Barlat, “Design optimization of extruded preform for hydroforming processes based on ideal forming design theory,” Int. J. Mech. Sci., vol. 48, no. 12, pp. 1416–1428, Dec. 2006. https://doi.org/10.1016/j.ijmecsci.2006.07.003
  24. H. Wang and C. C. Wang, “A general surface development algorithm based on energy model,” J. Comput.-Aided Des. Comput. Graph., vol. 13, no. 6, p. 556, 2001.
  25. Z. Cai, M. Li, and W. Guo, “Calculating blank of shell-like parts based on triangular mesh system,” Eng. Technol. Ed., vol. 32, no. 2, 2002.
  26. C. C. Wang, S. S. Smith, and M. M. Yuen, “Surface flattening based on energy model,” Comput.-Aided Des., vol. 34, no. 11, pp. 823–833, Sep. 2002. https://doi.org/10.1016/S0010-4485(01)00150-6
  27. S. Li, X. Liu, X. Zheng, and H. Lu, “An overview of flattening methods for complex surface,” J. Inf. Comput. Sci., vol. 11, no. 1, pp. 323–333, 2014.
  28. K. H. Shin, “A method for planar development of free-form surfaces made of anisotropic materials,” J. Mech. Sci. Technol., vol. 25, no. 11, pp. 2817–2825, Nov. 2011. https://doi.org/10.1007/s12206-011-0726-z
  29. Q. Liu, J. Xi, and Z. Wu, “An energy-based surface flattening method for flat pattern development of sheet metal components,” Int. J. Adv. Manuf. Technol., vol. 68, no. 5–8, pp. 1155–1166, Apr. 2013. https://doi.org/10.1007/s00170-013-4908-y
  30. E. Yavuz and R. Yazici, “A dynamic neural network model for accelerating preliminary parameterization of 3D triangular mesh surfaces,” Neural Comput. Appl., vol. 31, no. 8, pp. 3691–3701, Jan. 2018. https://doi.org/10.1007/s00521-017-3332-x
  31. E. Yavuz, R. Yazici, M. C. Kasapbasi, and T. T. Bilgin, “Improving initial flattening of convex-shaped free-form mesh surface patches using a dynamic virtual boundary,” Comput. Syst. Sci. Eng., vol. 34, no. 6, pp. 339–355, 2019. https://doi.org/10.32604/csse.2019.34.339
  32. D. N. Metaxas, Physics-Based Deformable Models. Dordrecht: Kluwer Academic, 1997. https://doi.org/10.1007/978-1-4615-6335-8
DOI: https://doi.org/10.2478/acss-2025-0015 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 133 - 146
Submitted on: Apr 7, 2025
Accepted on: Oct 17, 2025
Published on: Nov 7, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Erdem Yavuz, Rıfat Yazıcı, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.