Have a personal or library account? Click to login

PathGuard: Dynamic Large Vehicle Detection and Real-time Alerts on Narrow Roads Using Mobile Sensors

Open Access
|Oct 2025

References

  1. D. S. Samaraweera, “Road traffic accidents in Sri Lanka,” Weekly Epidemiological Report, vol. 51, no. 6, Feb. 2024. https://www.epid.gov.lk/storage/post/pdfs/en_65fc60581a048_Vol_51_no_06-english.pdf
  2. “Global status report on road safety 2023.” [Online]. Available: https://assets.bbhub.io/dotorg/sites/64/2023/12/WHO-Global-status-report-on-road-safety-2023.pdf
  3. L. Sun, H. Zhao, H. Tu, and Y. Tian, “The smart road: Practice and concept,” Engineering, vol. 4, no. 4, pp. 436–437, Aug. 2018. https://doi.org/10.1016/j.eng.2018.07.014
  4. D. Triantafyllou, N. Kotoulas, S. Krinidis, D. Ioannidis, and D. Tzovaras, “Large vehicle recognition and classification for traffic management and flow optimization in narrow roads,” in 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, Aug. 2017, pp. 1–4. https://doi.org/10.1109/UICATC.2017.8397670
  5. J.-S. Chou and C.-H. Liu, “Automated sensing system for real-time recognition of trucks in river dredging areas using computer vision and convolutional deep learning,” Sensors, vol. 21, no. 2, Jan. 2021, Art. no. 555. https://doi.org/10.3390/s21020555
  6. G. Dogan, J. D. Sturdivant, S. Ari, and E. Kurpiewski, “Locomotion-transportation recognition via LSTM and GPS derived feature engineering from cell phone data,” in Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers, USA, Sep. 2021, pp. 359–362. https://doi.org/10.1145/3460418.3479379
  7. C. Wang, H. Luo, F. Zhao, and Y. Qin, “Combining residual and LSTM recurrent networks for transportation mode detection using multimodal sensors integrated in smartphones,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 9, pp. 5473–5485, Sep. 2021. https://doi.org/10.1109/TITS.2020.2987598
  8. J. V. Jeyakumar, E. S. Lee, Z. Xia, S. S. Sandha, N. Tausik, and M. Srivastava, “Deep convolutional bidirectional LSTM based transportation mode recognition,” in Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, Oct. 2018, pp. 1606–1615. https://doi.org/10.1145/3267305.3267529
  9. B. Martin, V. Addona, J. Wolfson, G. Adomavicius, and Y. Fan, “Methods for real-time prediction of the mode of travel using smartphone-based GPS and accelerometer data,” Sensors, vol. 17, no. 9, Sep. 2017, Art. no. 2058. https://doi.org/10.3390/s17092058
  10. D.-N. Lu, D.-N. Nguyen, T.-H. Nguyen, and H.-N. Nguyen, “Vehicle mode and driving activity detection based on analyzing sensor data of smartphones,” Sensors, vol. 18, no. 4, Mar. 2018, Art. no. 1036. https://doi.org/10.3390/s18041036
  11. M. Shafique and E. Hato, “Travel mode detection with varying smartphone data collection frequencies,” Sensors, vol. 16, no. 5, May 2016, Art. no. 716. https://doi.org/10.3390/s16050716
  12. S. Ballı and E. A. Sağbaş, “Diagnosis of transportation modes on mobile phone using logistic regression classification,” IET Software, vol. 12, no. 2, pp. 142–151, Apr. 2018. https://doi.org/10.1049/iet-sen.2017.0035
  13. T. S. Pias, D. Eisenberg, and M. A. Islam, “Vehicle recognition via sensor data from smart devices,” in 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, Oct. 2019, pp. 96–99. https://doi.org/10.1109/ECICE47484.2019.8942799
  14. T. S. Pias, D. Eisenberg, and J. Fresneda Fernandez, “Accuracy improvement of vehicle recognition by using smart device sensors,” Sensors, vol. 22, no. 12, Jun. 2022, Art. no. 4397. https://doi.org/10.3390/s22124397
  15. Y. Fu, C. Li, F. R. Yu, T. H. Luan, and Y. Zhang, “A survey of driving safety with sensing, vehicular communications, and artificial intelligence-based collision avoidance,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 6142–6163, Jul. 2022. https://doi.org/10.1109/TITS.2021.3083927
  16. M. Anis, S. Li, S. R. Geedipally, Y. Zhou, and D. Lord, “Real-time risk estimation for active road safety: Leveraging Waymo AV sensor data with hierarchical Bayesian extreme value models,” arXiv: arXiv:2407.16832, Oct. 2024. https://doi.org/10.48550/arXiv.2407.16832
  17. K. Meduri, G. S. Nadella, H. Gonaygunta, and S. S. Meduri, “Developing a fog computing-based AI framework for real-time traffic management and optimization,” International Journal of Sustainable Development, vol 5, no 4, May 2023. https://www.researchgate.net/publication/391019625_Developing_a_Fog_Computing-based_AI_Framework_for_Real-time_Traffic_Management_and_Optimization
  18. O. N. Neamah, T. A. Almohamad, and R. Bayir, “Enhancing road safety: Real-time distracted driver detection using Nvidia Jetson Nano and YOLOv8,” in 2024 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, May 2024, pp. 194–198. https://doi.org/10.1109/ZINC61849.2024.10579437
  19. J. Singh “AI-driven path planning in autonomous vehicles: Algorithms for safe and efficient navigation in dynamic environments,” Journal of AI-Assisted Scientific Discovery, vol. 4, no. 1, pp. 48–88, 2024.
  20. L. S. Iyer, “AI enabled applications towards intelligent transportation,” Transportation Engineering, vol. 5, Sep. 2021, Art. no. 100083. https://doi.org/10.1016/j.treng.2021.100083
  21. X. Wang, J. Liu, T. Qiu, C. Mu, C. Chen, and P. Zhou, “A real-time collision prediction mechanism with deep learning for intelligent transportation system,” IEEE Transactions on Vehicular Technology, vol. 69, no. 9, pp. 9497–9508, Sep. 2020. https://doi.org/10.1109/TVT.2020.3003933
  22. X. Chen, Z. Wang, Q. Hua, W.-L. Shang, Q. Luo, and K. Yu, “AI-empowered speed extraction via port-like videos for vehicular trajectory analysis,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 4, pp. 4541–4552, Apr. 2023. https://doi.org/10.1109/TITS.2022.3167650
  23. F. Bhatti, M. A. Shah, C. Maple, and S. U. Islam, “A novel Internet of Things-Enabled accident detection and reporting system for smart city environments,” Sensors, vol. 19, no. 9, May 2019, Art. no. 2071. https://doi.org/10.3390/s19092071
  24. A. Khan, F. Bibi, M. Dilshad, S. Ahmed, Z. Ullah, and H. Ali, “Accident detection and smart rescue system using Android smartphone with real-time location tracking,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 6, pp. 341–355, 2018. https://doi.org/10.14569/IJACSA.2018.090648
  25. M. S. Roobini, S. Mulakalapally, N. Mungamuri, M. Lakshmi, A. Ponraj, and D. Deepa, “Car accident detection and notification system using smartphone,” Journal of Computational and Theoretical Nanoscience, vol. 17, no. 8, pp. 3389–3393, Aug. 2020. https://doi.org/10.1166/jctn.2020.9192
  26. Z. Ma, Y. Qiao, B. Lee, and E. Fallon, “Experimental evaluation of mobile phone sensors,” in 24th IET Irish Signals and Systems Conference (ISSC 2013), Letterkenny, Ireland, 2013, pp. 49–49. https://doi.org/10.1049/ic.2013.0047
  27. “Vehicle recognition dataset.” Accessed: Jun. 08, 2024. [Online]. Available: https://www.kaggle.com/datasets/tanmoypias/vehicle-recognition-dataset
  28. “Vieyra software,” vieyra-software. Accessed: Mar. 17, 2024. [Online]. Available: https://www.vieyrasoftware.net
  29. “Overpass turbo.” Accessed: Nov. 30, 2024. [Online]. Available: https://overpass-turbo.eu/
  30. “geojson.io.” [Online]. Available: https://geojson.io/#new&map=2/0/20
  31. J. Dougherty and I. Ilyankou, “Draw and edit with GeoJson.io | hands-on data visualization.” Accessed: Mar. 17, 2024. [Online]. Available: https://handsondataviz.org/geojsonio.html
  32. “Documentation – GeoPandas documentation.” Accessed: Mar. 17, 2024. [Online]. Available: https://geopandas.org/en/stable/docs.html
  33. “plotly.express: high-level interface for data visualization – 5.20.0 documentation.” Accessed: Mar. 17, 2024. [Online]. Available: https://plotly.com/python-api-reference/plotly.express.html
DOI: https://doi.org/10.2478/acss-2025-0014 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 122 - 132
Submitted on: Aug 9, 2025
Accepted on: Oct 16, 2025
Published on: Oct 27, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Sukhitha T. Sandunwala, B. M. Thosini Kumarika, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.