Have a personal or library account? Click to login

Analysing Software Quality of AI-Translated Code: A Comparative Study of Large Language Models Using Static Analysis

Open Access
|Oct 2025

References

  1. T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering, vol. SE-2, no. 4, pp. 308–320, Dec. 1976. https://doi.org/10.1109/TSE.1976.233837
  2. L. Coyle, M. Hinchey, B. Nuseibeh, and J. L. Fiadeiro, “Guest editors’ introduction: Evolving critical systems,” Computer, vol. 43, no. 05, pp. 28–33, May 2010. https://doi.org/10.1109/MC.2010.139
  3. IEEE standard glossary of software engineering terminology. Institute of Electrical and Electronics Engineers, IEEE Std 610.12-1990, 1990.
  4. C. W. Krueger, “Software reuse,” ACM Computing Surveys (CSUR), vol. 24, no. 2, pp. 131–183, Jun. 1992. https://doi.org/10.1145/130844.130856
  5. Transpiler Contributors, “Transpiler,” 2023. [Online]. Available: https://en.wikipedia.org/wiki/Transpiler
  6. J. M. Boyle and M. N. Muralidharan, “Program reusability through program transformation,” IEEE Transactions on Software Engineering, vol. SE-10, no. 5, pp. 574–588, Sep. 1984. https://doi.org/10.1109/TSE.1984.5010281
  7. R. C. Waters, “Program translation via abstraction and reimplementation,” IEEE Transactions on Software Engineering, vol. 14, no. 8, pp. 1207–1228, Aug. 1988. https://doi.org/10.1109/32.7629
  8. M. Mirchev, A. Costea, A. K. Singh, and A. Roychoudhury, “Assured automatic programming via large language models,” arXiv preprint arXiv:2410.18494, Oct. 2024. https://doi.org/10.48550/arXiv.2410.18494
  9. Q. Zhang, C. Fang, Y. Shang, T. Zhang, S. Yu, and Z. Chen, “No man is an island: Towards fully automatic programming by code search, code generation and program repair,” arXiv preprint arXiv:2409.03267, Sep. 2024. https://doi.org/10.48550/arXiv.2409.03267
  10. D. Kc and C. T. Morrison, “Neural machine translation for code generation,” arXiv preprint arXiv:2305.13504, Jan. 2023. https://doi.org/10.48550/arXiv.2305.13504
  11. M. Atemkeng, S. Hamlomo, B. Welman, N. Oyentunji, P. Ataei, and J. L. E. K. Fendji, “Ethics of software programming with generative AI: Is programming without generative AI always radical?” arXiv preprint arXiv:2408.10554, Aug. 2024. https://doi.org/10.48550/arXiv.2408.10554
  12. Z. Bahroun, C. Anane, V. Ahmed, and A. Zacca, “Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis,” Sustainability, vol. 15, no. 17, Aug. 2023, Art. no. 12983. https://doi.org/10.3390/su151712983
  13. R. Zviel-Girshin, “The good and bad of AI tools in novice programming education,” Education Sciences, vol. 14, no. 10, Art. no. 1089, Oct. 2024. https://doi.org/10.3390/educsci14101089
  14. B. A. Becker, P. Denny, J. Finnie-Ansley, A. Luxton-Reilly, J. Prather, and E. A. Santos, “Programming is hard – or at least it used to be: Educational opportunities and challenges of AI code generation,” arXiv preprint arXiv:2212.01020, Dec. 2022. https://doi.org/10.48550/arXiv.2212.01020
  15. E. Ortega-Ochoa, J. Sabaté, M. Arguedas, J. Conesa, T Daradoumis, and S. Caballé, “Exploring the utilization and deficiencies of generative artificial intelligence in students’ cognitive and emotional needs: a systematic mini-review,” Frontiers in Artificial Intelligence, vol. 7, Nov. 2024, Art. no. 1493566. https://doi.org/10.3389/frai.2024.1493566
  16. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  17. A. Ni, P. Yin, Y. Zhao, M. Riddell, T. Feng, R. Shen, S. Yin, L. Ye, S. Yavuz, C. Xiong, S. Joty, Y. Zhou, D. Radev, and A. Cohan, “L2ceval: Evaluating language-to-code generation capabilities of large language models,” arXiv preprint arXiv:2309.17446, Jan. 2023. https://doi.org/10.48550/arXiv.2309.17446
  18. R. Takaichi, Y. Higo, S. Matsumoto, S. Kusumoto, T. Kurabayashi, H. Kirinuki, and H. Tanno, “Are NLP metrics suitable for evaluating generated code?” in Product-Focused Software Process Improvement: 23rd International Conference, PROFES 2022, Jyväskylä, Finland, Nov. 2022, pp. 531–537. https://doi.org/10.1007/978-3-031-21388-5_38
  19. Y. Shao, “Human-computer interaction environment monitoring and collaborative translation mode exploration using artificial intelligence technology,” Journal of Environmental and Public Health, vol. 2022, Jan. 2022. https://doi.org/10.1155/2022/4702003
  20. R. Zou, W. Chang, S. Gao, and S. Qin, “Strategies for improving the quality of computer-assisted translation based on internet,” International Journal of Advanced Academic Studies, vol. 4, no. 4, pp. 156–158, Oct. 2022. https://doi.org/10.33545/27068919.2022.v4.i4c.890
  21. N. Radziwill and M. C. Benton, “Evaluating quality of chatbots and intelligent conversational agents,” arXiv preprint arXiv:1704.04579, Jan. 2017. https://doi.org/10.48550/arXiv.1704.04579
  22. C. Merow, J. M. Serra-Diaz, B. J. Enquist, and A. M. Wilson, “AI chatbots can boost scientific coding,” Nature Ecology Evolution, vol. 7, pp. 960–962, Apr. 2023. https://doi.org/10.1038/s41559-023-02063-3
  23. R. Michel-Villarreal, E. L. Vilalta-Perdomo, D. E. Salinas-Navarro, R. Thierry-Aguilera, and F. S. Gerardou, “Challenges and opportunities of generative AI for higher education as explained by ChatGPT,” Education Sciences, vol. 13, no. 9, Aug. 2023, Art. no. 856. https://doi.org/10.3390/educsci13090856
  24. J. Zhou, H. Müller, A. Holzinger, and F. Chen, “Ethical ChatGPT: Concerns, challenges, and commandments,” Electronics, vol. 13, no. 17, Aug. 2024, Art. no. 3417. https://doi.org/10.3390/electronics13173417
  25. T. Wu, S. He, J. Liu, S. Sun, K. Liu, Q.-L. Han, and Y. Tang, “A brief overview of ChatGPT: The history, status quo and potential future development,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1122–1136, May 2023. https://doi.org/10.1109/JAS.2023.123618
  26. R. Karanjai, L. Xu, and W. Shi, “Teaching machines to code: Smart contract translation with LLMs,” arXiv preprint arXiv:2403.09740, Mar. 2024. https://doi.org/10.48550/arXiv.2403.09740
  27. M. A. K. Raiaan, M. S. H. Mukta, K. Fatema, N. M. Fahad, S. Sakib, M. M. J. Mim, J. Ahmad, M. E. Ali, and S. Azam, “A review on large language models: Architectures, applications, taxonomies, open issues and challenges,” TechRxiv, Sep. 2023. https://doi.org/10.36227/techrxiv.24171183
  28. H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Barnes, and A. Mian, “A comprehensive overview of large language models,” arXiv preprint arXiv:2307.06435, Jul. 2023. https://doi.org/10.48550/arXiv.2307.06435
  29. “C static code analysis clean code programming language,” Jan. 2025. [Online]. Available: https://www.sonarsource.com/knowledge/languages/csharp
  30. “Code quality standards,” Jan. 2025. [Online]. Available: https://www.sonarsource.com/solutions/quality
  31. U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating sequences from structured representations of code,” arXiv preprint arXiv:1808.01400, Aug. 2018. https://doi.org/10.48550/arXiv.1808.01400
  32. B. Yang, X. Luo, J.-G. Li, X. Xie, H. Li, and J. Gao, “Deep code search,” arXiv preprint arXiv:1702.08347, 2017. https://arxiv.org/pdf/2305.05959
  33. U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning distributed representations of code,” Proceedings of the ACM on Programming Languages, vol. 3, no. POPL, Jan. 2019, Art. no. 40. https://doi.org/10.1145/3290353
  34. C. Xiao, “Comparison of differences between artificial intelligence translation and artificial translation,” Journal of Physics Conference Series, vol. 1992, Aug. 2021, Art. no. 22079. https://doi.org/10.1088/1742-6596/1992/2/022079
  35. T. Marjanov, I. Pashchenko, and F. Massacci, “Machine learning for source code vulnerability detection: What works and what isn’t there yet,” IEEE Security & Privacy, vol. 20, no. 5, pp. 60–76, Aug. 2022. https://doi.org/10.1109/MSEC.2022.3176058
  36. X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation,” in 2018 IEEE/ACM 26th International Conference on Program Comprehension (ICPC), 2018, pp. 200–210. https://doi.org/10.1145/3196321.3196334
  37. R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi, M. Merler, B. Sobolev, R. Pavuluri, S. Sinha, and R. Jabbarvand, “Lost in translation: A study of bugs introduced by large language models while translating code,” in Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (ICSE ‘24), Apr. 2024, Art. no. 82. https://doi.org/10.1145/3597503.3639226
  38. Z. Yang, F. Liu, Z. Yu, J. Keung, J. Li, S. Liu, Y. Hong, X. Ma, Z. Jin, and G. Li, “Exploring and unleashing the power of large language models in automated code translation,” in Proceedings of the ACM on Software Engineering., vol. 1, no. FSE, pp. 1585–1608, Jul. 2024. https://doi.org/10.1145/3660778
  39. U. Alon, M. Zilberstein, and O. Levy, “Code2vec: Learning distributed representations of code,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019, pp. 2733–2739. https://doi.org/10.1145/3290353
  40. M. Allamanis, M. Brockschmidt, M. Khademi, and C. Sutton, “Convolutional, recurrent, and hybrid models for paraphrase detection,” arXiv preprint arXiv:1601.06744, 2016.
  41. Y. Jiang and Z. Su, “Automated program repair: a literature review,” Foundations of Secure Computation, vol. 89, no. 5, pp. 517–590, 2012.
  42. V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical language models,” in Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, 2014, pp. 419–428. https://doi.org/10.1145/2594291.2594321
  43. R. Robbes, C. Petitpierre, and M. Monperrus, “User evaluations of automatic software repair,” ACM SIGSOFT Software Engineering Notes, vol. 37, no. 3, pp. 1–5, 2012.
  44. S. Sachdeva, O. Polozov, and S. Gulwani, “Effective program synthesis through efficient code transplantation,” in Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, 2017, pp. 722–736.
  45. Y. Qi, D. Sachan, M. Felix, S. Padmanabhan, and G. Neubig, “Rosetta: Large scale cross-lingual resource for natural language processing,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018, pp. 306–316.
  46. Z. Feng et al., “Code BERT: A pre-trained model for programming and natural languages,” arXiv preprint arXiv:2002.08155, Feb. 2020. https://doi.org/10.48550/arXiv.2002.08155
  47. M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to represent programs with graphs,” arXiv preprint arXiv:1711.00740, Nov. 2017. https://doi.org/10.48550/arXiv.1711.00740
  48. M. Allamanis and C. Sutton, “Transcoder: Analyzing code similarities for porting legacy code,” IEEE Transactions on Software Engineering, vol. 43, no. 6, pp. 527–546, 2017.
  49. P. Tembhekar, M. Devan, and J. Jeyaraman, “Role of GenAI in automated code generation within DevOps practices: Explore how generative AI” Journal of Knowledge Learning and Science Technology, vol. 2, no. 2, pp. 500–512, Oct. 2023. https://doi.org/10.60087/jklst.vol2.n2.p512
  50. J. Sun, Q. V. Liao, M. Muller, M. Agarwal, S. Houde, K. Talamadupula, and J. D. Weisz, “Investigating explainability of generative ai for code through scenario-based design,” in Proceedings of the 27th International Conference on Intelligent User Interfaces, 2022, pp. 212–228. https://doi.org/10.1145/3490099.3511119
  51. A. Q. Jiang et al., “Mixtral of experts,” arXiv preprint arXiv:2401.04088, Jan. 2024. https://doi.org/10.48550/arXiv.2401.04088
  52. D. Guo et al., “DeepSeek-Coder: When the large language model meets programming – the rise of code intelligence,” arXiv preprint arXiv:2401.14196, Jan. 2024. https://doi.org/10.48550/arXiv.2401.14196
  53. T. Zheng, G. Zhang, T. Shen, X. Liu, B. Y. Lin, J. Fu, W. Chen, and X. Yue, “OpenCodeInterpreter: Integrating code generation with execution and refinement,” arXiv preprint arXiv:2402.14658, 2024.
  54. A. Deroy and S. Maity, “Code generation and algorithmic problem solving using Llama 3.1 405b,” arXiv preprint arXiv:2409.19027, Sep. 2024. https://doi.org/10.48550/arXiv.2409.19027
  55. A. Sadik, A. Ceravola, F. Joublin, and J. Patra, “Analysis of ChatGPT on source code,” arXiv preprint arXiv:2306.00597, Jun. 2023. https://doi.org/10.48550/arXiv.2306.00597
  56. Z. Zheng, K. Ning, Y. Wang, J. Zhang, D. Zheng, M. Ye, and J. Chen, “A survey of large language models for code: Evolution, benchmarking, and future trends,” arXiv preprint arXiv:2311.10372, Nov. 2023. https://doi.org/10.48550/arXiv.2311.10372
  57. H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining zero-shot vulnerability repair with large language models,” in 2023 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, May 2023, pp. 2339–2356. https://doi.org/10.1109/SP46215.2023.10179324
  58. K. Huang, X. Wang, J. Fu, B. Xie, Z. Wang, Y. Yao, H. Guo, M. Tu, X. Sun, and H. Wang, “Codex GLUE: A machine learning benchmark dataset for code understanding and generation,” arXiv preprint arXiv:2102.04664, Feb. 2021. https://doi.org/10.48550/arXiv.2102.04664
  59. R. Puri et al., “CodeNet: A large-scale ai for code dataset for learning a diversity of coding tasks,” IBM Watson AI, 2021.
  60. M. Zhu, A. Jain, K. Suresh, R. Ravindran, S. Tipirneni, and C. K. Reddy, “XLCoST: A benchmark dataset for cross-lingual code intelligence,” arXiv preprint arXiv:2206.08474, Jun. 2022. https://doi.org/10.48550/arXiv.2206.08474
  61. Z. Zhang, C. Chen, B. Liu, C. Liao, Z. Gong, H. Yu, J. Li, and R. Wang, “Unifying the perspectives of NLP and software engineering: A survey on language models for code,” arXiv preprint arXiv:2311.07989v3, Dec. 2023. https://arxiv.org/html/2311.07989v3
  62. H. Lu et al., “DeepSeek-VL: towards real-world vision-language understanding,” arXiv preprint arXiv:2403.05525, Mar. 2024. https://doi.org/10.48550/arXiv.2403.05525
  63. W. Kim, “Multimodal foundation models: a taxonomy and reflections,” International Journal of Web and Grid Services, vol. 20, no. 4, pp. 505–531, Dec. 2024. https://doi.org/10.1504/IJWGS.2024.143177
  64. A. J. Adetayo, M. O. Aborisade, and B. A. Sanni, “Microsoft Copilot and Anthropic Claude AI in education and library service,” Library Hi Tech News, Jan. 2024. https://doi.org/10.1108/LHTN-01-2024-0002
  65. M. Imran and N. Almusharraf, “Google Gemini as a next generation AI educational tool: a review of emerging educational technology,” Smart Learning Environments, vol. 11, no. 1, May 2024, Art. no. 22. https://doi.org/10.1186/s40561-024-00310-z
  66. M. A. Akib, M. M. Mazumder, and S. Ahsan, “Analysis on LLMs performance for code summarization,” arXiv preprint arXiv:2412.17094, Dec. 2024. https://doi.org/10.48550/arXiv.2412.17094
  67. D. Noever and F. McKee, “Numeracy from literacy: Data science as an emergent skill from large language models,” arXiv preprint arXiv.2301.13382, Jan. 2023. https://doi.org/10.48550/arXiv.2301.13382
  68. F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic evaluation of large language models of code,” in Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming (MAPS 2022), Jun. 2022, pp. 1–10. https://doi.org/10.1145/3520312.3534862
  69. V. Corso, L. Mariani, D. Micucci, and O. Riganelli, “Assessing AI-based code assistants in method generation tasks,” in Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion’24), May 2024, pp. 380–381. https://doi.org/10.1145/3639478.3643122
  70. A. Cohan, S. Feldman, I. Beltagy, D. Downey, and D. S. Weld, “Specter: Document-level representation learning using citation-informed transformers,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul. 2020, pp. 2270–2282. https://doi.org/10.18653/v1/2020.acl-main.207
  71. D. N. Palacio, A. Velasco, D. Rodriguez-Cardenas, K. Moran, and D. Poshyvanyk, “Evaluating and explaining large language models for code using syntactic structures,” arXiv preprint arXiv.2308.03873, Aug. 2023. https://doi.org/10.48550/arXiv.2308.03873
  72. P. P. Ray, “ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope,” Internet of Things and Cyber-Physical Systems, vol. 3, pp. 121–154, Jan. 2023. https://doi.org/10.1016/j.iotcps.2023.04.003
  73. L. Murr, M. Grainger, and D. Y. Gao, “Testing LLMs on code generation with varying levels of prompt specificity,” arXiv preprint arXiv.2311.07599, Nov. 2023. https://doi.org/10.48550/arXiv.2311.07599
  74. “Java 2 CSharp Translator for Eclipse,” SourceForge. [Online]. Available: https://sourceforge.net/projects/j2cstranslator
  75. S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung, “Building code transpilers for domain-specific languages using program synthesis (experience paper),” in 37th European Conference on Object-Oriented Programming (ECOOP 2023), 2023, pp. 1–30. https://dnb.info/1367153115/34
  76. H. Lunnikivi, K. Jylkkä, and T. Hämäläinen, “Transpiling Python to rust for optimized performance,” in International Conference on Embedded Computer Systems, Oct. 2020, pp. 127–138. https://doi.org/10.1007/978-3-030-60939-9_9
  77. F. A. Bastidas and M. Pérez, “A systematic review on transpiler usage for transaction-oriented applications,” in 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), Cuenca, Ecuador, Oct. 2018, pp. 1–6. https://doi.org/10.1109/ETCM.2018.8580312
  78. M. Marcelino and A. M. Leitão, “Transpiling Python to Julia using PyJL,” in Proceedings of the 15th European Lisp Symposium (ELS’22), 2022, pp. 40–47.
  79. J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, “ChatGPT prompt patterns for improving code quality, refactoring, requirements elicitation, and software design,” in Generative AI for Effective Software Development, A. Nguyen-Duc, P. Abrahamsson, and F. Khomh, Eds. Springer, Cham, Jan. 2024, pp. 71–108. https://doi.org/10.1007/978-3-031-55642-5_4
  80. Y. Chen, C. Wong, H. Yang, J. Aguenza, S. Bhujangari, B. C. Vu, X. Lei, A. Prasad, M. Fluss, E. Phuong, M. Liu, and J. Davis, “Assessing the impact of prompting, persona, and chain of thought methods on ChatGPT’s arithmetic capabilities,” arXiv preprint arXiv.2312.15006, Dec. 2023. https://doi.org/10.48550/arXiv.2312.15006
  81. B. Chen, Z. Zhang, N. Langrené, and S. Zhu, “Unleashing the potential of prompt engineering in large language models,” Patterns, vol. 6, no. 6, Jun. 2025, Art. no. 101260. https://doi.org/10.1016/j.patter.2025.101260
  82. B. Dornauer, M. Felderer, J. Weinzerl, M.-C. Racasan, and M. Heß, “SoHist: A tool for managing technical debt through retro perspective code analysis,” in Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering (EASE ‘23), Jun. 2023, pp. 184–187. https://doi.org/10.1145/3593434.3593460
  83. A. Puspaningrum, M. A. A. Hilmi, Darsih, M. Z. Mustamiin, and M. I. Ginanjar, “Vulnerable source code detection using sonarcloud code analysis,” in Proceedings of the 5th International Conference on Applied Science and Technology on Engineering Science (iCAST-ES 2022), vol. 1, Bandung, Indonesia, Jan. 2022, pp. 683–687. https://doi.org/10.5220/0011862600003575
  84. V. Bhutani, F. G. Toosi, and J. Buckley, “Analysing the analysers: An investigation of source code analysis tools,” Applied Computer Systems, vol. 29, no. 1, pp. 98–111, Jun. 2024. https://doi.org/10.2478/acss-2024-0013
  85. M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software maintainability prediction and metrics,” in 2009 3rd International Symposium on Empirical Software Engineering and Measurement, Lake Buena Vista, FL, USA, Oct. 2009, pp. 367–377. https://doi.org/10.1109/ESEM.2009.5314233
  86. “Most used languages among software developers globally 2021.” [Online]. Available: https://www.statista.com/statistics/793628/worldwide-developer-survey-most-usedlanguages/
  87. M. Weyssow, X. Zhou, K. Kim, D. Lo, and H. Sahraoui, “Exploring parameter-efficient fine-tuning techniques for code generation with large language models,” arXiv preprint arXiv.2308.10462, Aug. 2023. https://doi.org/10.48550/arXiv.2308.10462
  88. A. Malyala, K. Zhou, B. Ray, and S. Chakraborty, “On ML-based program translation: Perils and promises,” arXiv preprint arXiv.2302.10812, Feb. 2023. https://doi.org/10.48550/arXiv.2302.10812
  89. W. Yan, Y. Tian, Y. Li, Q. Chen, and W. Wang, “CodeTransOcean: A comprehensive multilingual benchmark for code translation,” arXiv preprint arXiv.2310.04951, Oct. 2023. https://doi.org/10.48550/arXiv.2310.04951
  90. L. Chen, “Research on code generation technology based on LLM pre-training,” Frontiers in Computing and Intelligent Systems, vol. 10, no. 1, pp. 69–75, Oct. 2024. https://doi.org/10.54097/scrwpt34
  91. C. Tony, N. E. D. Ferreyra, M. Mutas, S. Dhiff, and R. Scandariato, “Prompting techniques for secure code generation: A systematic investigation,” arXiv preprint arXiv.2407.07064, Jul. 2024. https://doi.org/10.48550/arXiv.2407.07064
  92. I. Paul, J. Luo, G. Glavaš, and I. Gurevych, “IRCoder: Intermediate representations make language models robust multilingual code generators,” arXiv preprint arXiv:2403.03894v1, Mar. 2024. https://arxiv.org/html/2403.03894v1
  93. N. Raihan, C. D. Newman, and M. Zampieri, “Code LLMs: A taxonomy-based survey,” arXiv preprint arXiv.2412.08291, Dec. 2024. https://doi.org/10.48550/arXiv.2412.08291
  94. P. Devanbu, “New initiative: The naturalness of software,” in 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 2, Florence, Italy, May 2015, pp. 543–546. https://doi.org/10.1109/ICSE.2015.190
  95. N. Jain, T. Zhang, W.-L. Chiang, J. E. Gonzalez, K. Sen, and I. Stoica, “LLM-assisted code cleaning for training accurate code generators,” arXiv preprint arXiv.2311.14904, Nov. 2023. https://doi.org/10.48550/arXiv.2311.14904
  96. A. Back and E. Westman, “Comparing programming languages in Google Code Jam,” Master’s thesis, Chalmers University of Technology and University of Gothenburg, 2017. https://publications.lib.chalmers.se/records/fulltext/250672/250672.pdf
  97. H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt, “CodeSearchNet challenge: Evaluating the state of semantic code search,” arXiv preprint arXiv:1909.09436, 2019. https://arxiv.org/pdf/1909.09436
  98. M. Zhu, K. Suresh, and C. K. Reddy, “Multilingual code snippets training for program translation,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 10, pp. 11783–11790, Jun. 2022. https://doi.org/10.1609/aaai.v36i10.21434
  99. X. Chen, C. Liu, and D. Song, “Tree-to-tree neural networks for program translation,” Advances in Neural Information Processing Systems, vol. 31, 2018.
  100. D. Guo et al., “GraphCodeBERT: Pre-training code representations with data flow,” arXiv preprint arXiv:2009.08366, Sep. 2020. https://doi.org/10.48550/arXiv.2009.08366
  101. W. U. Ahmad, G. R. Tushar, S. Chakraborty, and K.-W. Chang, “AVATAR: A parallel corpus for java-python program translation,” arXiv preprint arXiv.2108.11590, Aug. 2021. https://doi.org/10.48550/arXiv.2108.11590
  102. “Statistical Significance: Definition, Calculation, Importance.” [Online]. Available: https://surveysparrow.com/blog/statistical-significance
  103. J. D. Weisz, M. Muller, S. I. Ross, F. Martinez, S. Houde, M. Agarwal, K. Talamadupula, and J. T. Richards, “Better together? An evaluation of AI-supported code translation,” in 27th International Conference on Intelligent User Interfaces, Mar. 2022, pp. 369–391. https://doi.org/10.1145/3490099.3511157
  104. PwC, “25th Annual Global CEO Survey.” [Online]. Available: https://www.pwc.com/gx/en/ceo-agenda/ceosurvey/2022.html
  105. European commission, “Ethics guidelines for trustworthy AI,” Shaping Europe’s digital future - European Commission, Apr. 2019. [Online]. Available: https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
DOI: https://doi.org/10.2478/acss-2025-0013 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 105 - 121
Submitted on: Jul 19, 2025
Accepted on: Oct 3, 2025
Published on: Oct 23, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Vikram Bhutani, Farshad Ghassemi Toosi, Jim Buckley, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.