References
- J. Eisenstein, Introduction to Natural Language Processing. The MIT Press, 2019.
- K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown, “Text classification algorithms: A survey,” Information, vol. 10, no. 4, Apr. 2019, Art. no. 150. https://doi.org/10.3390/info10040150
- A. Palanivinayagam, C. Z. El-Bayeh, and R. Damaševičius, “Twenty years of machine-learning-based text classification: A systematic review,” Algorithms, vol. 16, no. 5, Apr. 2023, Art. no. 236. https://doi.org/10.3390/a16050236
- J. M. Patel, “Deep learning: Concepts, architectures, workflow, applications and future directions,” International Journal for Multidisciplinary Research, vol. 5, no. 6, pp. 1–7, Nov.–Dec. 2023. https://doi.org/10.36948/ijfmr.2023.v05i06.11497
- D. H. Hagos, R. Battle, and D. B. Rawat, “Recent advances in generative AI and large language models: Current status, challenges, and perspectives,” arXiv:2407.14962, Aug. 2024. https://doi.org/10.48550/arXiv.2407.14962
- A. Zangari, M. Marcuzzo, M. Schiavinato, M. Rizzo, A. Gasparetto, and A. Albarelli, “Hierarchical text classification: A review of current research,” Electronics, vol. 13, no. 7, Mar. 2024, Art. no. 1199. https://doi.org/10.3390/electronics13071199
- A. Gasparetto, M. Marcuzzo, A. Zangari, and A. Albarelli, “A survey on text classification algorithms: From text to predictions,” Information, vol. 13, no. 2, Feb. 2022, Art. no. 83. https://doi.org/10.3390/info13020083
- Q. Li, H. Peng, J. Li, C. Xia, R. Yang, L. Sun, P. S. Yu, and L. He, “A survey on text classification: From traditional to deep learning,” ACM Trans. Intell. Syst. Technol., vol. 13, no. 2, Apr. 2022, Art. no. 31. https://doi.org/10.1145/3495162
- S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao, “Deep learning-based text classification: A comprehensive review,” ACM Comput. Surv., vol. 54, no. 3, Apr. 2021, Art. no. 62. https://doi.org/10.1145/3439726
- A. Gasparetto, A. Zangari, M. Marcuzzo, and A. Albarelli, “A survey on text classification: Practical perspectives on the Italian language,” PLoS ONE, vol. 17, no. 7, Jul. 2022, Art. no. e0270904. https://doi.org/10.1371/journal.pone.0270904
- J. Fields, K. Chovanec, and P. Madiraju, “A survey of text classification with transformers: How wide? How large? How long? How accurate? How expensive? How safe?,” IEEE Access, vol. 12, pp. 6518–6531, Jan. 2024. https://doi.org/10.1109/ACCESS.2024.3349952
- S. Bhawsar, S. Dubey, S. Kushwaha, and S. Sharma, “Text classification using deep learning: A survey,” in Proceedings of International Conference on Computational Intelligence, Singapore, 2023, pp. 205–216. https://doi.org/10.1007/978-981-19-2126-1_16
- A. Zangari, M. Marcuzzo, M. Rizzo, L. Giudice, A. Albarelli, and A. Gasparetto, “Hierarchical text classification and its foundations: A review of current research,” Electronics, vol. 13, no. 7, Mar. 2024, Art. no. 1199. https://doi.org/10.3390/electronics13071199
- Z. Yang and G. Liu, “Hierarchical sequence-to-sequence model for multi-label text classification,” IEEE Access, vol. 7, pp. 153012–153020, Oct. 2019. https://doi.org/10.1109/ACCESS.2019.2948855
- W. Zhao, H. Gao, S. Chen, and N. Wang, “Generative multi-task learning for text classification,” IEEE Access, vol. 8, pp. 86380–86387, May 2020. https://doi.org/10.1109/ACCESS.2020.2991337
- K. Rivas Rojas, G. Bustamante, A. Oncevay, and M. A. Sobrevilla Cabezudo, “Efficient strategies for hierarchical text classification: External knowledge and auxiliary tasks,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul. 2020, pp. 2252–2257. https://doi.org/10.18653/v1/2020.acl-main.205
- J. Risch, S. Garda, and R. Krestel, “Hierarchical document classification as a sequence generation task,” in Proceedings of the ACM/IEEE Joint Conference on Digital Libraries, China, Aug. 2020, pp. 147–155. https://doi.org/10.1145/3383583.3398538
- J. Yan, P. Li, H. Chen, J. Zheng, and Q. Ma, “Does the order matter? A random generative way to learn label hierarchy for hierarchical text classification,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 32, pp. 276–285, Nov. 2024. https://doi.org/10.1109/TASLP.2023.3329374
- J. Kwon, H. Kamigaito, Y.-I. Song, and M. Okumura, “Hierarchical label generation for text classification,” in Proceedings of the Findings of the Association for Computational Linguistics: EACL 2023, Dubrovnik, Croatia, May 2023, pp. 625–632. https://doi.org/10.18653/v1/2023.findings-eacl.46
- F. Torba, C. Gravier, C. Laclau, A. Kammoun, and J. Subercaze, “A study on hierarchical text classification as a Seq2seq task,” in Advances in Information Retrieval. ECIR 2024, Cham, Mar. 2024, pp. 287–296. https://doi.org/10.1007/978-3-031-56063-7_20
- J. Zhang, Y. Li, F. Shen, Y. He, H. Tan, and Y. He, “Hierarchical text classification with multi-label contrastive learning and KNN,” Neurocomputing, vol. 577, Apr. 2024, Art. no. 127323. https://doi.org/10.1016/j.neucom.2024.127323
- J. Zhou, C. Ma, D. Long, G. Xu, N. Ding, H. Zhang, P. Xie, and G. Liu, “Hierarchy-aware global model for hierarchical text classification,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul. 2020, pp. 1106–1117. https://doi.org/10.18653/v1/2020.acl-main.104
- H. Liu, X. Huang, and X. Liu, “Improve label embedding quality through global sensitive GAT for hierarchical text classification,” Expert Systems with Applications, vol. 238, Mar. 2024, Art. no. 122267. https://doi.org/10.1016/j.eswa.2023.122267
- H. Chen, Q. Ma, Z. Lin, and J. Yan, “Hierarchy-aware label semantics matching network for hierarchical text classification,” in Proc. of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th Int. J. Conf. on Nat. Language Processing, ACL/IJCNLP 2021, Aug. 2021, pp. 4370–4379. https://doi.org/10.18653/v1/2021.acl-long.337
- J. Zhang, Y. Li, F. Shen, C. Xia, H. Tan, and Y. He, “Hierarchy-aware and label balanced model for hierarchical text classification,” Knowledge-Based Systems, vol. 300, Sep. 2024, Art. no. 112153. https://doi.org/10.1016/j.knosys.2024.112153
- A. Pal, M. Selvakumar, and M. Sankarasubbu, “MAGNET: Multi-label text classification using attention-based graph neural network,” in Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020), Valletta, Malta, 2020, pp. 494–505. https://doi.org/10.5220/0008940304940505
- R. Zhao, X. Wei, C. Ding, and Y. Chen, “Hierarchical multi-label text classification: Self-adaption semantic awareness network integrating text topic and label level information,” in Proceedings of the Knowledge Science, Engineering and Management, Hangzhou, China, Aug. 2021, pp. 406–418. https://doi.org/10.1007/978-3-030-82147-0_33
- J. Chen, S. Zhao, F. Lu, F. Liu, and Y. Zhang, “Research on patent classification based on hierarchical label semantics,” in 2022 3rd International Conference on Education, Knowledge and Information Management (ICEKIM), Harbin, China, Aug. 2022, pp. 1025–1032. https://doi.org/10.1109/ICEKIM55072.2022.00223
- Z. Yao, H. Chai, J. Cui, S. Tang, and Q. Liao, “HITSZQ at SemEval-2023 Task 10: Category-aware sexism detection model with self-training strategy,” in Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), Toronto, Canada, Jul. 2023, pp. 934–940. https://doi.org/10.18653/v1/2023.semeval-1.129
- B. Ning, D. Zhao, X. Zhang, C. Wang, and S. Song, “UMP-MG: A unidirected message-passing multi-label generation model for hierarchical text classification,” Data Science and Engineering, vol. 8, pp. 112–123, Jun. 2023. https://doi.org/10.1007/s41019-023-00210-1
- J. Song, F. Wang, and Y. Yang, “Peer-label assisted hierarchical text classification,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, Canada, Jul. 2023, pp. 3747–3758. https://doi.org/10.18653/v1/2023.acl-long.207
- Z. Wang, P. Wang, L. Huang, X. Sun, and H. Wang, “Incorporating hierarchy into text encoder: a contrastive learning approach for hierarchical text classification,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, May 2022, pp. 7109–7119. https://doi.org/10.18653/v1/2022.acl-long.491
- Y. Liu, K. Zhang, Z. Huang, K. Wang, Y. Zhang, Q. Liu, and E. Chen, “Enhancing hierarchical text classification through knowledge graph integration,” in Proceedings of the Findings of the Association for Computational Linguistics: ACL 2023, Toronto, ON, Canada, Jul. 2023, pp. 5797–5810. https://doi.org/10.18653/v1/2023.findings-acl.358
- Z. Wang, P. Wang, T. Liu, Y. Cao, Z. Sui, and H. Wang, “HPT: Hierarchy-aware prompt tuning for hierarchical text classification,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, Dec. 2022, pp. 3740–3751. https://doi.org/10.18653/v1/2022.emnlp-main.246
- K. Ji, Y. Lian, J. Gao, and B. Wang, “Hierarchical verbalizer for few-shot hierarchical text classification,” in Proc. of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, ON, Canada, Jul. 2023, pp. 2918–2933. https://doi.org/10.18653/v1/2023.acl-long.164
- Y. Zhang, R. Yang, X. Xu, R. Li, J. Xiao, J. Shen, and J. Han, “TELEClass: Taxonomy enrichment and LLM-enhanced hierarchical text classification with minimal supervision,” arXiv:2403.00165, 2024. https://arxiv.org/pdf/2403.00165
- L. Chen, H. Chou, and X. Zhu, “Developing prefix-tuning models for hierarchical text classification,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track, Abu Dhabi, UAE, Dec. 2022, pp. 390–397. https://doi.org/10.18653/v1/2022.emnlp-industry.39
- A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are unsupervised multitask learners,” OpenAI blog, vol. 1, 2019, Art. no. 9.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, 2017. https://arxiv.org/pdf/1706.03762
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in The 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), Minneapolis, Minnesota, 2019, pp. 4171–4186.
- S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997. https://doi.org/10.1162/neco.1997.9.8.1735
- M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, Nov. 1997. https://doi.org/10.1109/78.650093
- H. Bichri, A. Chergui, and M. Hain, “Investigating the impact of train/test split ratio on the performance of pre-trained models with custom datasets,” International Journal of Advanced Computer Science & Applications, vol. 15, no. 2, 2024. https://doi.org/10.14569/IJACSA.2024.0150235
- B. Vrigazova, “The proportion for splitting data into training and test set for the bootstrap in classification problems,” Business Systems Research Journal, vol. 12, no. 1, pp. 228–242, May 2021. https://doi.org/10.2478/bsrj-2021-0015
- D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,” International Journal of Machine Learning Technology, vol. 2, no. 1, pp. 37–63, Jan. 2011. https://doi.org/10.9735/2229-3981
- P. Christen, D. J. Hand, and N. Kirielle, “A review of the F-measure: Its history, properties, criticism, and alternatives,” ACM Comput. Surv., vol. 56, no. 3, Oct. 2023, Art. no. 73. https://doi.org/10.1145/3606367
- A. Kosmopoulos, I. Partalas, E. Gaussier, G. Paliouras, and I. Androutsopoulos, “Evaluation measures for hierarchical classification: a unified view and novel approaches,” Data Mining and Knowledge Discovery, vol. 29, pp. 820–865, May 2015. https://doi.org/10.1007/s10618-014-0382-x