J. Edward, J. Banchs, H. Parker, and W. Cornwell, “Right ventricular function across the spectrum of health and disease,” Heart, vol. 109, pp. 349–355, May 2022. https://doi.org/10.1136/heartjnl-2021-320526
C. Martín-Isla et al., “Deep learning segmentation of the right ventricle in cardiac MRI: The M&Ms challenge,” IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 7, pp. 3302–3313, Jul. 2023. https://doi.org/10.1109/JBHI.2023.3267857
J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” arXiv:1411.4038, Nov. 2014. https://doi.org/10.48550/arXiv.1411.4038
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” arXiv:1505.04597, May 2015. https://doi.org/10.48550/arXiv.1505.04597
A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, Oct. 2020. https://doi.org/10.48550/arXiv.2010.11929
Y.-Z. Li et al., “RSU-Net: U-net based on residual and self-attention mechanism in the segmentation of cardiac magnetic resonance images,” Computer Methods and Programs in Biomedicine, vol. 231, Aug. 2023, Art. no. 107437. https://doi.org/10.1016/j.cmpb.2023.107437
C. Fan, Q. Su, Z. Xiao, H. Su, A. Hou, and B. Luan, “ViT-FRD: A vision transformer model for cardiac MRI image segmentation based on feature recombination distillation,” IEEE Access, vol. 11, pp. 129763–129772, Jan. 2023. https://doi.org/10.1109/access.2023.3302522
K. Borys et al., “Explainable AI in medical imaging: An overview for clinical practitioners – Beyond saliency-based XAI approaches,” European Journal of Radiology, vol. 162, May 2023, Art. no. 110786. https://doi.org/10.1016/j.ejrad.2023.110786
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual explanations from deep networks via gradient-based localization,” International Journal of Computer Vision, vol. 128, no. 2, pp. 336–359, Feb. 2020. https://doi.org/10.1007/s11263-019-01228-7
S. Desai and H. G. Ramaswamy, “Ablation-CAM: Visual explanations for deep convolutional network via gradient-free localization,” in 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, Mar. 2020, pp. 972–980. https://doi.org/10.1109/WACV45572.2020.9093360
G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.-R. Müller, “Layer-wise relevance propagation: An overview,” in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Lecture Notes in Computer Science, W. Samek, G. Montavon, A. Vedaldi, L. Hansen, and K. R. Müller, Eds., vol. 11700, Sep. 2019, pp. 193–209. https://doi.org/10.1007/978-3-030-28954-6_10
A. Janik, J. Dodd, G. Ifrim, K. Sankaran, and K. M. Curran, “Interpretability of a deep learning model in the application of cardiac MRI segmentation with an ACDC challenge dataset,” Medical Imaging 2021: Image Processing, vol. 11596, Feb. 2021. https://doi.org/10.1117/12.2582227
A. Kaur, G. Dong, and A. Basu, “GradXcepUNet: Explainable AI based medical image segmentation,” in Smart Multimedia. ICSM 2022. Lecture Notes in Computer Science, vol 13497. Springer, Cham, Jan. 2022, pp. 174–188. https://doi.org/10.1007/978-3-031-22061-6_13
R. Gipiškis, D. Chiaro, D. Annunziata, and F. Piccialli, “Ablation studies in activation maps for explainable semantic segmentation in industry 4.0,” in IEEE EUROCON 2023 – 20th International Conference on Smart Technologies, Torino, Italy, Jul. 2023, pp. 36–41. https://doi.org/10.1109/eurocon56442.2023.10199094
K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: surpassing human-level performance on ImageNet classification,” arXiv:1502.01852, Feb. 2015. https://doi.org/10.48550/arxiv.1502.01852
D. Karimi and S. E. Salcudean, “Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks,” IEEE Transactions on Medical Imaging, vol. 39, no. 2, pp. 499–513, Feb. 2020. https://doi.org/10.1109/tmi.2019.2930068
N. Kokhlikyan et al., “Captum: A unified and generic model interpretability library for PyTorch,” arXiv:2009.07896, Sep. 2020. https://doi.org/10.48550/arXiv.2009.07896
A. Singh, S. Sengupta, and V. Lakshminarayanan, “Explainable deep learning models in medical image analysis,” arXiv:2005.13799, May 2020. https://doi.org/10.48550/arXiv.2005.13799