I. Moreno-Montes de Oca, M. Snoeck, H. A. Reijers, and A. Rodríguez-Morffi, “A systematic literature review of studies on business process modeling quality,” Inf. Softw. Technol., vol. 58, pp. 187–205, Feb. 2015. https://doi.org/10.1016/j.infsof.2014.07.011
D. Orlovskyi and A. Kopp, “An approach to business process model structuredness analysis: Errors detection and cost-saving estimation,” in ICTERI 2021 Workshops, O. Ignatenko et al., Eds., in ICTERI 2021 Workshops. ICTERI 2021. Communications in Computer and Information Science, vol 1635. Springer, Cham, Sep. 2022, pp. 23–39. https://doi.org/10.1007/978-3-031-14841-5_2
M. Omar and G. Baryannis, “Semi-automated development of conceptual models from natural language text,” Data Knowl. Eng., vol. 127, May 2020, Art. no. 101796. https://doi.org/10.1016/j.datak.2020.101796
M. Osborne and C. K. MacNish, “Processing natural language software requirement specifications,” in Proceedings of the Second International Conference on Requirements Engineering, Colorado Springs, CO, USA, Apr. 1996, pp. 229–236. https://doi.org/10.1109/ICRE.1996.491451
K. R. Chowdhary, “Natural language processing,” in Fundamentals of Artificial Intelligence, K. R. Chowdhary, Ed. New Delhi: Springer India, Apr. 2020, pp. 603–649. https://doi.org/10.1007/978-81-322-3972-7_19
F. Friedrich, J. Mendling, and F. Puhlmann, “Process model generation from natural language text,” in Advanced Information Systems Engineering. CAiSE 2011. Lecture Notes in Computer Science, H. Mouratidis and C. Rolland, Eds., vol 6741. Springer, Berlin, Heidelberg, 2011, pp. 482–496. https://doi.org/10.1007/978-3-642-21640-4_36
F. Lin, M. Yang, and Y. Pai, “A generic structure for business process modeling,” Bus. Process Manag. J., vol. 8, no. 1, pp. 19–41, Mar. 2002. https://doi.org/10.1108/14637150210418610
F. Bargiela-Chiappini, C. Nickerson, and B. Planken, “What is business discourse?” in Business Discourse. Research and Practice in Applied Linguistics, F. Bargiela-Chiappini, C. Nickerson, and B. Planken, Eds. London: Palgrave Macmillan UK, 2013, pp. 3–44. https://doi.org/10.1057/9781137024930_1
T. Jacobs and R. Tschötschel, “Topic models meet discourse analysis: a quantitative tool for a qualitative approach,” Int. J. Soc. Res. Methodol., vol. 22, no. 5, pp. 469–485, Sep. 2019. https://doi.org/10.1080/13645579.2019.1576317
V. Dogra et al., “A complete process of text classification system using state-of-the-art NLP models,” Comput. Intell. Neurosci., vol. 2022, Jun. 2022, Art. no. e1883698. https://doi.org/10.1155/2022/1883698
A. Bhardwaj, Y. Narayan, and M. Dutta, “Sentiment analysis for Indian stock market prediction using Sensex and Nifty,” Procedia Comput. Sci., vol. 70, pp. 85–91, 2015. https://doi.org/10.1016/j.procs.2015.10.043
A. Ittoo and A. van den Bosch, “Text analytics in industry: Challenges, desiderata and trends,” Comput. Ind., vol. 78, pp. 96–107, May 2016. https://doi.org/10.1016/j.compind.2015.12.001
V. Prokhorov, M. T. Pilehvar, D. Kartsaklis, P. Lio, and N. Collier, “Unseen word representation by aligning heterogeneous lexical semantic spaces,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 1, 2019, pp. 6900–6907. https://doi.org/10.1609/aaai.v33i01.33016900
E. Darics and J. Clifton, “Making applied linguistics applicable to business practice. Discourse analysis as a management tool,” Appl. Linguist., vol. 40, no. 6, pp. 917–936, Dec. 2019. https://doi.org/10.1093/applin/amy040
G. H. John and P. Langley, “Estimating continuous distributions in Bayesian classifiers,” ArXiv Prepr. ArXiv13024964, Feb. 2013. https://doi.org/10.48550/arXiv.1302.4964
N. Ur-Rahman and J. A. Harding, “Textual data mining for industrial knowledge management and text classification: A business oriented approach,” Expert Syst. Appl., vol. 39, no. 5, pp. 4729–4739, Apr. 2012. https://doi.org/10.1016/j.eswa.2011.09.124
P. Sunagar, A. Kanavalli, S. S. Nayak, S. R. Mahan, S. Prasad, and S. Prasad, “News topic classification using machine learning techniques,” in International Conference on Communication, Computing and Electronics Systems, Lecture Notes in Electrical Engineering, V. Bindhu, J. M. R. S. Tavares, A.-A. A. Boulogeorgos, and C. Vuppalapati, Eds., vol. 733. Singapore: Springer Singapore, 2021, pp. 461–474. https://doi.org/10.1007/978-981-33-4909-4_35
S. Godbole and S. Roy, “Text classification, business intelligence, and interactivity: automating C-Sat analysis for services industry,” in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, Las Vegas Nevada USA, Aug. 2008, pp. 911–919. https://doi.org/10.1145/1401890.1401999
S. Albitar, S. Fournier, and B. Espinasse, “An effective TF/IDF-based text-to-text semantic similarity measure for text classification,” in Web Information Systems Engineering – WISE 2014, Lecture Notes in Computer Science, vol. 8786, B. Benatallah, A. Bestavros, Y. Manolopoulos, A. Vakali, and Y. Zhang, Eds., Cham: Springer International Publishing, 2014, pp. 105–114. https://doi.org/10.1007/978-3-319-11749-2_8
H. Leopold, Ed., Natural Language in Business Process Models: Theoretical Foundations, Techniques, and Applications, LNBIP, vol. 168. Cham: Springer International Publishing, 2013. https://doi.org/10.1007/978-3-319-04175-9
K. Honkisz, K. Kluza, and P. Wiśniewski, “A concept for generating business process models from natural language description,” in Knowledge Science, Engineering and Management: 11th International Conference, KSEM 2018, Part I 11, Changchun, China, Aug. 2018, pp. 91–103. https://doi.org/10.1007/978-3-319-99365-2_8
M. Camargo, M. Dumas, and O. González-Rojas, “Learning accurate LSTM models of business processes,” in Business Process Management, Lecture Notes in Computer Science, T. Hildebrandt, B. F. Van Dongen, M. Röglinger, and J. Mendling, Eds., vol. 11675. Cham: Springer International Publishing, July 2019, pp. 286–302. https://doi.org/10.1007/978-3-030-26619-6_19
M. Kocbek, G. Jost, M. Hericko, and G. Polancic, “Business process model and notation: The current state of affairs,” Comput. Sci. Inf. Syst., vol. 12, no. 2, pp. 509–539, 2015. https://doi.org/10.2298/CSIS140610006K
M. El Kassis, F. Trousset, N. Daclin, and G. Zacharewicz, “Business process web-based platform for multi modeling and simulation,” in JFMS 2022-Les Journées Francophones de la Modélisation et de la Simulation: Ingénierie Dirigée par les Modèles pour la Théorie de la Modélisation et de la Simulation et les Systèmes Multi-Agents, cepadues, 2022.
J. Erasmus, I. Vanderfeesten, K. Traganos, and P. Grefen, “Using business process models for the specification of manufacturing operations,” Comput. Ind., vol. 123, Dec. 2020, Art. no. 103297. https://doi.org/10.1016/j.compind.2020.103297
M. Wiemuth, D. Junger, M. A. Leitritz, J. Neumann, T. Neumuth, and O. Burgert, “Application fields for the new object management group (OMG) standards case management model and notation (CMMN) and decision management notation (DMN) in the perioperative field,” Int. J. Comput. Assist. Radiol. Surg., vol. 12, pp. 1439–1449, 2017. https://doi.org/10.1007/s11548-017-1608-3
R. Kumar, K. S. R. Murthy, J. Ramesh Babu, and A. Shaik, “Live text analyzer to detect unsolicited messages using count vectorizer,” J. Eng. Sci., vol. 14, no. 06, 2023. [Online]. Available: https://jespublication.com/uploads/2023-V14I60100.pdf. Accessed on: Jan. 02, 2024.
L. Jiang, S. Wang, C. Li, and L. Zhang, “Structure extended multinomial naive Bayes,” Inf. Sci., vol. 329, pp. 346–356, Feb. 2016. https://doi.org/10.1016/j.ins.2015.09.037
E. Mayoraz and E. Alpaydin, “Support vector machines for multi-class classification,” in Engineering Applications of Bio-Inspired Artificial Neural Networks, Lecture Notes in Computer Science, J. Mira and J. V. Sánchez-Andrés, Eds. Springer Berlin Heidelberg, 1999, pp. 833–842. https://doi.org/10.1007/BFb0100551
S. Qaiser and R. Ali, “Text mining: use of TF-IDF to examine the relevance of words to documents,” Int. J. Comput. Appl., vol. 181, no. 1, pp. 25–29, July 2018. https://doi.org/10.5120/ijca2018917395
I. Adeshola and A. P. Adepoju, “The opportunities and challenges of ChatGPT in education,” Interact. Learn. Environ., vol. 32, no. 10, pp. 1–14, Sep. 2023. https://doi.org/10.1080/10494820.2023.2253858
B. D. Lund and T. Wang, “Chatting about ChatGPT: how may AI and GPT impact academia and libraries?” Libr. Hi Tech News, vol. 40, no. 3, pp. 26–29, Feb. 2023. https://doi.org/10.1108/LHTN-01-2023-0009