Have a personal or library account? Click to login

Method for Creating Domain-Specific Dataset Ontologies from Text in Uncontrolled English

Open Access
|Jan 2025

References

  1. I. Moreno-Montes de Oca, M. Snoeck, H. A. Reijers, and A. Rodríguez-Morffi, “A systematic literature review of studies on business process modeling quality,” Inf. Softw. Technol., vol. 58, pp. 187–205, Feb. 2015. https://doi.org/10.1016/j.infsof.2014.07.011
  2. D. Orlovskyi and A. Kopp, “An approach to business process model structuredness analysis: Errors detection and cost-saving estimation,” in ICTERI 2021 Workshops, O. Ignatenko et al., Eds., in ICTERI 2021 Workshops. ICTERI 2021. Communications in Computer and Information Science, vol 1635. Springer, Cham, Sep. 2022, pp. 23–39. https://doi.org/10.1007/978-3-031-14841-5_2
  3. M. Omar and G. Baryannis, “Semi-automated development of conceptual models from natural language text,” Data Knowl. Eng., vol. 127, May 2020, Art. no. 101796. https://doi.org/10.1016/j.datak.2020.101796
  4. T. Rozman, G. Polancic, and R. V. Horvat, “Analysis of most common process modeling mistakes in BPMN process models,” EuroSPI’2007, Sep. 2007. [Online]. Available: https://conference.eurospi.net/images/proceedings/EuroSPI2007-ISBN-978-3-9809145-6-7.pdf#page=30. Accessed on: Dec. 12, 2023.
  5. J. Herbst and D. Karagiannis, “An inductive approach to the acquisition and adaptation of workflow models,” in Proceedings of the IJCAI, 1999, pp. 52–57. [Online]. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=03d2b48ef058590661877829529770de93f30d51. Accessed: Dec. 13, 2023.
  6. M. Osborne and C. K. MacNish, “Processing natural language software requirement specifications,” in Proceedings of the Second International Conference on Requirements Engineering, Colorado Springs, CO, USA, Apr. 1996, pp. 229–236. https://doi.org/10.1109/ICRE.1996.491451
  7. K. R. Chowdhary, “Natural language processing,” in Fundamentals of Artificial Intelligence, K. R. Chowdhary, Ed. New Delhi: Springer India, Apr. 2020, pp. 603–649. https://doi.org/10.1007/978-81-322-3972-7_19
  8. F. Friedrich, J. Mendling, and F. Puhlmann, “Process model generation from natural language text,” in Advanced Information Systems Engineering. CAiSE 2011. Lecture Notes in Computer Science, H. Mouratidis and C. Rolland, Eds., vol 6741. Springer, Berlin, Heidelberg, 2011, pp. 482–496. https://doi.org/10.1007/978-3-642-21640-4_36
  9. F. Lin, M. Yang, and Y. Pai, “A generic structure for business process modeling,” Bus. Process Manag. J., vol. 8, no. 1, pp. 19–41, Mar. 2002. https://doi.org/10.1108/14637150210418610
  10. F. Bargiela-Chiappini, C. Nickerson, and B. Planken, “What is business discourse?” in Business Discourse. Research and Practice in Applied Linguistics, F. Bargiela-Chiappini, C. Nickerson, and B. Planken, Eds. London: Palgrave Macmillan UK, 2013, pp. 3–44. https://doi.org/10.1057/9781137024930_1
  11. T. Jacobs and R. Tschötschel, “Topic models meet discourse analysis: a quantitative tool for a qualitative approach,” Int. J. Soc. Res. Methodol., vol. 22, no. 5, pp. 469–485, Sep. 2019. https://doi.org/10.1080/13645579.2019.1576317
  12. V. Dogra et al., “A complete process of text classification system using state-of-the-art NLP models,” Comput. Intell. Neurosci., vol. 2022, Jun. 2022, Art. no. e1883698. https://doi.org/10.1155/2022/1883698
  13. A. Bhardwaj, Y. Narayan, and M. Dutta, “Sentiment analysis for Indian stock market prediction using Sensex and Nifty,” Procedia Comput. Sci., vol. 70, pp. 85–91, 2015. https://doi.org/10.1016/j.procs.2015.10.043
  14. A. Ittoo and A. van den Bosch, “Text analytics in industry: Challenges, desiderata and trends,” Comput. Ind., vol. 78, pp. 96–107, May 2016. https://doi.org/10.1016/j.compind.2015.12.001
  15. V. Prokhorov, M. T. Pilehvar, D. Kartsaklis, P. Lio, and N. Collier, “Unseen word representation by aligning heterogeneous lexical semantic spaces,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 1, 2019, pp. 6900–6907. https://doi.org/10.1609/aaai.v33i01.33016900
  16. E. Darics and J. Clifton, “Making applied linguistics applicable to business practice. Discourse analysis as a management tool,” Appl. Linguist., vol. 40, no. 6, pp. 917–936, Dec. 2019. https://doi.org/10.1093/applin/amy040
  17. S. Xu, “Bayesian Naïve Bayes classifiers to text classification,” J. Inf. Sci., vol. 44, no. 1, pp. 48–59, Feb. 2018. https://doi.org/10.1177/0165551516677946
  18. G. H. John and P. Langley, “Estimating continuous distributions in Bayesian classifiers,” ArXiv Prepr. ArXiv13024964, Feb. 2013. https://doi.org/10.48550/arXiv.1302.4964
  19. X. Luo, “Efficient English text classification using selected Machine Learning Techniques,” Alex. Eng. J., vol. 60, no. 3, pp. 3401–3409, Jun. 2021. https://doi.org/10.1016/j.aej.2021.02.009
  20. N. Ur-Rahman and J. A. Harding, “Textual data mining for industrial knowledge management and text classification: A business oriented approach,” Expert Syst. Appl., vol. 39, no. 5, pp. 4729–4739, Apr. 2012. https://doi.org/10.1016/j.eswa.2011.09.124
  21. P. Sunagar, A. Kanavalli, S. S. Nayak, S. R. Mahan, S. Prasad, and S. Prasad, “News topic classification using machine learning techniques,” in International Conference on Communication, Computing and Electronics Systems, Lecture Notes in Electrical Engineering, V. Bindhu, J. M. R. S. Tavares, A.-A. A. Boulogeorgos, and C. Vuppalapati, Eds., vol. 733. Singapore: Springer Singapore, 2021, pp. 461–474. https://doi.org/10.1007/978-981-33-4909-4_35
  22. S. Godbole and S. Roy, “Text classification, business intelligence, and interactivity: automating C-Sat analysis for services industry,” in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, Las Vegas Nevada USA, Aug. 2008, pp. 911–919. https://doi.org/10.1145/1401890.1401999
  23. V. A. Zeithaml, M. J. Bitner, and D. D. Gremler, “The gaps model of service quality,” Serv. Mark., pp. 37–49, 1996.
  24. S. Albitar, S. Fournier, and B. Espinasse, “An effective TF/IDF-based text-to-text semantic similarity measure for text classification,” in Web Information Systems Engineering – WISE 2014, Lecture Notes in Computer Science, vol. 8786, B. Benatallah, A. Bestavros, Y. Manolopoulos, A. Vakali, and Y. Zhang, Eds., Cham: Springer International Publishing, 2014, pp. 105–114. https://doi.org/10.1007/978-3-319-11749-2_8
  25. H. Leopold, Ed., Natural Language in Business Process Models: Theoretical Foundations, Techniques, and Applications, LNBIP, vol. 168. Cham: Springer International Publishing, 2013. https://doi.org/10.1007/978-3-319-04175-9
  26. K. Honkisz, K. Kluza, and P. Wiśniewski, “A concept for generating business process models from natural language description,” in Knowledge Science, Engineering and Management: 11th International Conference, KSEM 2018, Part I 11, Changchun, China, Aug. 2018, pp. 91–103. https://doi.org/10.1007/978-3-319-99365-2_8
  27. M. Camargo, M. Dumas, and O. González-Rojas, “Learning accurate LSTM models of business processes,” in Business Process Management, Lecture Notes in Computer Science, T. Hildebrandt, B. F. Van Dongen, M. Röglinger, and J. Mendling, Eds., vol. 11675. Cham: Springer International Publishing, July 2019, pp. 286–302. https://doi.org/10.1007/978-3-030-26619-6_19
  28. M. Kocbek, G. Jost, M. Hericko, and G. Polancic, “Business process model and notation: The current state of affairs,” Comput. Sci. Inf. Syst., vol. 12, no. 2, pp. 509–539, 2015. https://doi.org/10.2298/CSIS140610006K
  29. M. El Kassis, F. Trousset, N. Daclin, and G. Zacharewicz, “Business process web-based platform for multi modeling and simulation,” in JFMS 2022-Les Journées Francophones de la Modélisation et de la Simulation: Ingénierie Dirigée par les Modèles pour la Théorie de la Modélisation et de la Simulation et les Systèmes Multi-Agents, cepadues, 2022.
  30. J. Erasmus, I. Vanderfeesten, K. Traganos, and P. Grefen, “Using business process models for the specification of manufacturing operations,” Comput. Ind., vol. 123, Dec. 2020, Art. no. 103297. https://doi.org/10.1016/j.compind.2020.103297
  31. M. Wiemuth, D. Junger, M. A. Leitritz, J. Neumann, T. Neumuth, and O. Burgert, “Application fields for the new object management group (OMG) standards case management model and notation (CMMN) and decision management notation (DMN) in the perioperative field,” Int. J. Comput. Assist. Radiol. Surg., vol. 12, pp. 1439–1449, 2017. https://doi.org/10.1007/s11548-017-1608-3
  32. R. Kumar, K. S. R. Murthy, J. Ramesh Babu, and A. Shaik, “Live text analyzer to detect unsolicited messages using count vectorizer,” J. Eng. Sci., vol. 14, no. 06, 2023. [Online]. Available: https://jespublication.com/uploads/2023-V14I60100.pdf. Accessed on: Jan. 02, 2024.
  33. R. Odegua, “An empirical study of ensemble techniques (bagging, boosting and stacking),” in Proc. Conf.: Deep Learn. IndabaXAt, 2019. [Online]. Available: https://www.researchgate.net/profile/Rising-Odegua/publication/338681864_An_Empirical_Study_of_Ensemble_Techniques_Bagging_Boosting_and_Stacking/links/5e2417c2458515ba2092f5cf/An-Empirical-Study-of-Ensemble-Techniques-Bagging-Boosting-and-Stacking.pdf. Accessed on: Nov. 12, 2023.
  34. G. Kunapuli, Ensemble Methods for Machine Learning. Simon and Schuster, 2023.
  35. T.-T. Wong and H.-C. Tsai, “Multinomial naïve Bayesian classifier with generalized Dirichlet priors for high-dimensional imbalanced data,” Knowledge-Based Systems, vol. 228, Sep. 2021, Art. no. 107288. https://doi.org/10.1016/j.knosys.2021.107288
  36. L. Jiang, S. Wang, C. Li, and L. Zhang, “Structure extended multinomial naive Bayes,” Inf. Sci., vol. 329, pp. 346–356, Feb. 2016. https://doi.org/10.1016/j.ins.2015.09.037
  37. E. Mayoraz and E. Alpaydin, “Support vector machines for multi-class classification,” in Engineering Applications of Bio-Inspired Artificial Neural Networks, Lecture Notes in Computer Science, J. Mira and J. V. Sánchez-Andrés, Eds. Springer Berlin Heidelberg, 1999, pp. 833–842. https://doi.org/10.1007/BFb0100551
  38. J. Weston and C. Watkins, “Support vector machines for multi-class pattern recognition.,” in Esann, 1999, pp. 219–224. [Online]. Available: https://www.esann.org/sites/default/files/proceedings/legacy/es1999-461.pdf. Accessed on: Nov. 12, 2023.
  39. W. S. Noble, “What is a support vector machine?” Nat. Biotechnol., vol. 24, no. 12, pp. 1565–1567, Dec. 2006. https://doi.org/10.1038/nbt1206-1565
  40. R. Flowers and C. Edeki, “Business process modeling notation,” Int. J. Comput. Sci. Mob. Comput., vol. 2, no. 3, pp. 35–40, Mar. 2013. https://ijcsmc.com/docs/papers/March2013/V2I3201305.pdf
  41. I. Mel’čuk and A. Polguere, “A formal lexicon in meaning-text theory (or how to do lexica with words),” Comput. Linguist., vol. 13, pp. 261–275, 1987.
  42. J. Mendling, Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for Correctness, vol. 6. Springer Science & Business Media, 2008. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=LDUh05-ZkkC&oi=fnd&pg=PA1&dq=Mendling,J.:MetricsforProcessModels:EmpiricalFoundationsofVerification,Error+Prediction,+and+Guidelines+for+Correctness.+LNBIP,+vol.+6.+Springer,+Heidelberg+(1974)&ots=7ZlqcB4No9&sig=SNjDw5vugvHaH1F22Lk3aRnGrJ8. Accessed: Dec. 19, 2023.
  43. S. Qaiser and R. Ali, “Text mining: use of TF-IDF to examine the relevance of words to documents,” Int. J. Comput. Appl., vol. 181, no. 1, pp. 25–29, July 2018. https://doi.org/10.5120/ijca2018917395
  44. N. Japkowicz, “Why question machine learning evaluation methods,” in AAAI workshop on evaluation methods for machine learning, 2006, pp. 6–11. [Online]. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=46ecd8f4708764a9c5efb4916395f5d013b970cb. Accessed: Nov. 12, 2023.
  45. S. S. Biswas, “Role of Chat GPT in public health,” Ann. Biomed. Eng., vol. 51, no. 5, pp. 868–869, Mar. 2023. https://doi.org/10.1007/s10439-023-03172-7
  46. I. Adeshola and A. P. Adepoju, “The opportunities and challenges of ChatGPT in education,” Interact. Learn. Environ., vol. 32, no. 10, pp. 1–14, Sep. 2023. https://doi.org/10.1080/10494820.2023.2253858
  47. B. D. Lund and T. Wang, “Chatting about ChatGPT: how may AI and GPT impact academia and libraries?” Libr. Hi Tech News, vol. 40, no. 3, pp. 26–29, Feb. 2023. https://doi.org/10.1108/LHTN-01-2023-0009
  48. M. Dumas, M. La Rosa, J. Mendling, and H. A Reijers, Fundamentals of Business Process Management. Springer, Mar. 2013. https://doi.org/10.1007/978-3-642-33143-5
DOI: https://doi.org/10.2478/acss-2025-0001 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 1 - 11
Submitted on: Dec 9, 2024
Accepted on: Jan 3, 2025
Published on: Jan 21, 2025
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Shokoufeh Salem Minab, Erika Nazaruka, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.