Have a personal or library account? Click to login

Deep Learning-Based Renal Stone Detection: A Comprehensive Study and Performance Analysis

Open Access
|Aug 2024

References

  1. Y. Kazemi and S. A. Mirroshandel, “A novel method for predicting kidney stone type using ensemble learning,” Artificial Intelligence in Medicine, vol. 84, pp. 117–126, Jan. 2018. https://doi.org/10.1016/j.artmed.2017.12.001">https://doi.org/10.1016/j.artmed.2017.12.001
  2. A. Parakh, H. Lee, J. H. Lee, B. H. Eisner, D. V. Sahani, and S. Do, “Urinary stone detection on CT images using deep convolutional neural networks: evaluation of model performance and generalization,” Radiology: Artificial Intelligence, vol. 1, no.4, Jul. 2019, Art. no. e180066. https://doi.org/10.1148/ryai.2019180066">https://doi.org/10.1148/ryai.2019180066
  3. F. Ma, T. Sun, L. Liu, and H. Jing, “Detection and diagnosis of chronic kidney disease using deep learning-based heterogeneous modified artificial neural network,” Future Generation Computer Systems, vol. 111, pp. 17–26, Oct. 2020. https://doi.org/10.1016/j.future.2020.04.036">https://doi.org/10.1016/j.future.2020.04.036
  4. K. Viswanath, B. Anilkumar, and R. Gunasundari, “Design of deep learning reaction-diffusion level set segmentation approach for health care related to automatic kidney stone detection analysis,” Multimedia Tools and Applications, vol. 81, no. 29, pp. 41807–41849, Jul. 2022. https://doi.org/10.1007/s11042-021-11263-7">https://doi.org/10.1007/s11042-021-11263-7
  5. D. C. Elton, E. B. Turkbey, P. J. Pickhardt, and R. M. Summers, “A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans,” Medical Physics, vol. 49, no. 4, pp. 2545–2554, Feb. 2022. https://doi.org/10.1002/mp.15518">https://doi.org/10.1002/mp.15518
  6. J. D. Arias-Londoño, J. A. Gómez-García, L. Moro-Velázquez, and J. I. Godino-Llorente, “Artificial intelligence applied to chest X-ray images for the automatic detection of COVID-19. A thoughtful evaluation approach,” IEEE Access, vol. 8, pp. 226811–226827, Dec. 2020. https://doi.org/10.1109/ACCESS.2020.3044858">https://doi.org/10.1109/ACCESS.2020.3044858
  7. B. Manoj, N. Mohan, S. S. Kumar, and K. P. Soman, “Automated detection of kidney stone using deep learning models,” in 2022 2nd international conference on intelligent technologies (CONIT), Hubli, India, Jun. 2022, pp. 1–5. https://doi.org/10.1109/CONIT55038.2022.9847894">https://doi.org/10.1109/CONIT55038.2022.9847894
  8. K. M. Black, H. Law, A. Aldoukhi, J. Deng, and K. R. Ghani, “Deep learning computer vision algorithm for detecting kidney stone composition,” BJU International, vol. 125, no. 6, pp. 920–924, Jun. 2020. https://doi.org/10.1111/bju.15035">https://doi.org/10.1111/bju.15035
  9. K. Yildirim, P. G. Bozdag, M. Talo, O. Yildirim, M. Karabatak, and U. R. Acharya, “Deep learning model for automated kidney stone detection using coronal CT images,” Computers in Biology and Medicine, vol. 135, Aug. 2021, Art. no. 104569. https://doi.org/10.1016/j.compbiomed.2021.104569">https://doi.org/10.1016/j.compbiomed.2021.104569
  10. U. S. Kim, H. S. Kwon, W. Yang, W. Lee, C. Choi, J. K. Kim, S. H. Lee, D. Rim, and J. H. Han, “Prediction of the composition of urinary stones using deep learning,” Investigative and Clinical Urology, vol. 63, no. 4, May 2022, Art. no. 441. https://doi.org/10.4111/icu.20220062">https://doi.org/10.4111/icu.20220062
  11. S. Azizi et al., “Big self-supervised models advance medical image classification,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, Oct. 2021, pp. 3478–3488. https://doi.org/10.1109/ICCV48922.2021.00346">https://doi.org/10.1109/ICCV48922.2021.00346
  12. Y. Celik, M. Talo, O. Yildirim, M. Karabatak, and U. R. Acharya, “Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images,” Pattern Recognition Letters, vol. 133, pp. 232–239, May 2020. https://doi.org/10.1016/j.patrec.2020.03.011
  13. A. Chewcharat and G. Curhan, “Trends in the prevalence of kidney stones in the United States from 2007 to 2016,” Urolithiasis, vol. 49, no. 1, pp. 27–39, Sep. 2021. https://doi.org/10.1007/s00240-020-01210-w">https://doi.org/10.1007/s00240-020-01210-w
  14. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks, ” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, Jul. 2017, pp. 4700–4708. https://doi.org/10.1109/CVPR.2017.243">https://doi.org/10.1109/CVPR.2017.243
  15. S. S. Kumar, M. A. Kumar, and K. P. Soman, “Sentiment analysis of tweets in Malayalam using long short-term memory units and convolutional neural nets,” in Mining Intelligence and Knowledge Exploration: 5th International Conference, MIKE 2017, Hyderabad, India, Dec. 2017, pp. 320–334. https://doi.org/10.1007/978-3-319-71928-3_31">https://doi.org/10.1007/978-3-319-71928-3_31
  16. N. Mohan, K. P. Soman, and R. Vinayakumar, “Deep power: Deep learning architectures for power quality disturbances classification,” in 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, Dec. 2017, pp. 1–6. https://doi.org/10.1109/TAPENERGY.2017.8397249
  17. M. Längkvist, J. Jendeberg, P. Thunberg, A. Loutfi, and M. Lidén, “Computer aided detection of ureteral stones in thin slice computed tomography volumes using convolutional neural networks,” Computers in Biology and Medicine, vol. 97, pp. 153–160, Jun. 2018. https://doi.org/10.1016/j.compbiomed.2018.04.021
DOI: https://doi.org/10.2478/acss-2024-0014 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 112 - 116
Submitted on: Feb 6, 2024
Accepted on: Jul 29, 2024
Published on: Aug 15, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Priyadharsini Ravisankar, Varsha Balaji, Shahul Hameed T, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.