Y. Kazemi and S. A. Mirroshandel, “A novel method for predicting kidney stone type using ensemble learning,” Artificial Intelligence in Medicine, vol. 84, pp. 117–126, Jan. 2018. https://doi.org/10.1016/j.artmed.2017.12.001">https://doi.org/10.1016/j.artmed.2017.12.001
A. Parakh, H. Lee, J. H. Lee, B. H. Eisner, D. V. Sahani, and S. Do, “Urinary stone detection on CT images using deep convolutional neural networks: evaluation of model performance and generalization,” Radiology: Artificial Intelligence, vol. 1, no.4, Jul. 2019, Art. no. e180066. https://doi.org/10.1148/ryai.2019180066">https://doi.org/10.1148/ryai.2019180066
F. Ma, T. Sun, L. Liu, and H. Jing, “Detection and diagnosis of chronic kidney disease using deep learning-based heterogeneous modified artificial neural network,” Future Generation Computer Systems, vol. 111, pp. 17–26, Oct. 2020. https://doi.org/10.1016/j.future.2020.04.036">https://doi.org/10.1016/j.future.2020.04.036
K. Viswanath, B. Anilkumar, and R. Gunasundari, “Design of deep learning reaction-diffusion level set segmentation approach for health care related to automatic kidney stone detection analysis,” Multimedia Tools and Applications, vol. 81, no. 29, pp. 41807–41849, Jul. 2022. https://doi.org/10.1007/s11042-021-11263-7">https://doi.org/10.1007/s11042-021-11263-7
D. C. Elton, E. B. Turkbey, P. J. Pickhardt, and R. M. Summers, “A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans,” Medical Physics, vol. 49, no. 4, pp. 2545–2554, Feb. 2022. https://doi.org/10.1002/mp.15518">https://doi.org/10.1002/mp.15518
J. D. Arias-Londoño, J. A. Gómez-García, L. Moro-Velázquez, and J. I. Godino-Llorente, “Artificial intelligence applied to chest X-ray images for the automatic detection of COVID-19. A thoughtful evaluation approach,” IEEE Access, vol. 8, pp. 226811–226827, Dec. 2020. https://doi.org/10.1109/ACCESS.2020.3044858">https://doi.org/10.1109/ACCESS.2020.3044858
B. Manoj, N. Mohan, S. S. Kumar, and K. P. Soman, “Automated detection of kidney stone using deep learning models,” in 2022 2nd international conference on intelligent technologies (CONIT), Hubli, India, Jun. 2022, pp. 1–5. https://doi.org/10.1109/CONIT55038.2022.9847894">https://doi.org/10.1109/CONIT55038.2022.9847894
K. M. Black, H. Law, A. Aldoukhi, J. Deng, and K. R. Ghani, “Deep learning computer vision algorithm for detecting kidney stone composition,” BJU International, vol. 125, no. 6, pp. 920–924, Jun. 2020. https://doi.org/10.1111/bju.15035">https://doi.org/10.1111/bju.15035
K. Yildirim, P. G. Bozdag, M. Talo, O. Yildirim, M. Karabatak, and U. R. Acharya, “Deep learning model for automated kidney stone detection using coronal CT images,” Computers in Biology and Medicine, vol. 135, Aug. 2021, Art. no. 104569. https://doi.org/10.1016/j.compbiomed.2021.104569">https://doi.org/10.1016/j.compbiomed.2021.104569
U. S. Kim, H. S. Kwon, W. Yang, W. Lee, C. Choi, J. K. Kim, S. H. Lee, D. Rim, and J. H. Han, “Prediction of the composition of urinary stones using deep learning,” Investigative and Clinical Urology, vol. 63, no. 4, May 2022, Art. no. 441. https://doi.org/10.4111/icu.20220062">https://doi.org/10.4111/icu.20220062
S. Azizi et al., “Big self-supervised models advance medical image classification,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, Oct. 2021, pp. 3478–3488. https://doi.org/10.1109/ICCV48922.2021.00346">https://doi.org/10.1109/ICCV48922.2021.00346
Y. Celik, M. Talo, O. Yildirim, M. Karabatak, and U. R. Acharya, “Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images,” Pattern Recognition Letters, vol. 133, pp. 232–239, May 2020. https://doi.org/10.1016/j.patrec.2020.03.011
A. Chewcharat and G. Curhan, “Trends in the prevalence of kidney stones in the United States from 2007 to 2016,” Urolithiasis, vol. 49, no. 1, pp. 27–39, Sep. 2021. https://doi.org/10.1007/s00240-020-01210-w">https://doi.org/10.1007/s00240-020-01210-w
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks, ” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, Jul. 2017, pp. 4700–4708. https://doi.org/10.1109/CVPR.2017.243">https://doi.org/10.1109/CVPR.2017.243
S. S. Kumar, M. A. Kumar, and K. P. Soman, “Sentiment analysis of tweets in Malayalam using long short-term memory units and convolutional neural nets,” in Mining Intelligence and Knowledge Exploration: 5th International Conference, MIKE 2017, Hyderabad, India, Dec. 2017, pp. 320–334. https://doi.org/10.1007/978-3-319-71928-3_31">https://doi.org/10.1007/978-3-319-71928-3_31
N. Mohan, K. P. Soman, and R. Vinayakumar, “Deep power: Deep learning architectures for power quality disturbances classification,” in 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, Dec. 2017, pp. 1–6. https://doi.org/10.1109/TAPENERGY.2017.8397249
M. Längkvist, J. Jendeberg, P. Thunberg, A. Loutfi, and M. Lidén, “Computer aided detection of ureteral stones in thin slice computed tomography volumes using convolutional neural networks,” Computers in Biology and Medicine, vol. 97, pp. 153–160, Jun. 2018. https://doi.org/10.1016/j.compbiomed.2018.04.021