Have a personal or library account? Click to login

Alzheimer’s Disease Detection: A Comparative Study of Machine Learning Models and Multilayer Perceptron

Open Access
|Aug 2024

References

  1. A. Shukla, R. Tiwari, and S. Tiwari, “Review on Alzheimer disease detection methods: Automatic pipelines and machine learning techniques,” Sci, vol. 5, no. 1, Mar. 2023, Art. no. 13. https://doi.org/10.3390/sci5010013
  2. C. Kavitha et al., “Early-stage Alzheimer's disease prediction using machine learning models,” Frontiers in Public Health, vol. 10, Mar. 2022, Art. no. 853294. https://doi.org/10.3389/fpubh.2022.853294
  3. S. A. Mahajan, G. Bangar, and N. Kulkarni, “Machine learning algorithms for classification of various stages of Alzheimer's disease: A review,” Machine Learning, vol. 7, no. 8, pp. 817–824, Aug. 2020. https://www.researchgate.net/publication/344132855_IRJET_Machine_Learning_Algorithms_for_Classification_of_Various_Stages_of_Alzheimer's_Disease_A_review
  4. C. K. Fisher, A. M. Smith, and J. R. Walsh, “Machine learning for comprehensive forecasting of Alzheimer’s disease progression,” Scientific Reports, vol. 9, no. 1, Sep. 2019, Art. no. 13622. https://doi.org/10.1038/s41598-019-49656-2
  5. D. S. Marcus, A. F. Fotenos, J. G. Csernansky, J. C. Morris, and R. L. Buckner, “Open access series of imaging studies: Longitudinal MRI data in nondemented and demented older adults,” J. Cogn. Neurosci., vol. 22, no. 12, pp. 2677–2684, 2010. https://doi.org/10.1162/jocn.2009.21407
  6. D. Ebrahim, A. M. T. Ali-Eldin, H. E. Moustafa, and H. Arafat, “Alzheimer disease early detection using convolutional neural networks,” in 2020 15th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, Dec. 2020, pp. 1–6. https://doi.org/10.1109/ICCES51560.2020.9334594
  7. T. Al-Shoukry, H. Rassem, and N. M. Makbol, “Alzheimer’s diseases detection by using deep learning algorithms: A minireview,” IEEE Access, vol. 8, pp. 77131–77141, Apr. 2020. https://doi.org/10.1109/ACCESS.2020.2989396
  8. M. Karnati, A. Seal, A. Yazidi, and O. Kreicar, “LieNet: A deep convolution neural network framework for detecting deception,” IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 3, pp. 971–984, Jun. 2021. https://doi.org/10.1109/TCDS.2021.3086011
  9. A. A. Yousry, W. M. Bahgat, and M. Badawy, “A CNN based framework for classification of Alzheimer’s disease,” Neural Computing and Applications, vol. 33, pp. 10415–10428, Mar. 2021. https://doi.org/10.1007/s00521-021-05799-w
  10. M. Amini, M. Mohsen, A. R. Moradi, and M. Ouchani, “Diagnosis of Alzheimer’s disease severity with fMRI images using robust multitask feature extraction method and convolutional neural network (CNN),” Computational and Mathematical Methods in Medicine, pp. 1–15, Apr. 2021. https://doi.org/10.1155/2021/5514839
  11. P. Baglat, A. W. Salehi, A. Gupta, and G. Gupta, “Multiple machine learning models for detection of Alzheimer’s disease using OASIS dataset,” in Re-imagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation. TDIT 2020. IFIP Advances in Information and Communication Technology, S.K. Sharma, Y.K. Dwivedi, B. Metri, and N.P. Rana, Eds., vol 617. Tiruchirappalli, India, Dec. 2020. Springer Cham. https://doi.org/10.1007/978-3-030-64849-7_54
  12. G. Mirzaei and H. Adeli, “Machine learning techniques for diagnosis of Alzheimer disease, mild cognitive disorder, and other types of dementia,” Biomedical Signal Processing and Control, vol. 72, Feb. 2022, Art. no. 103293. https://doi.org/10.1016/j.bspc.2021.103293
  13. M. Shahbaz, A. Shahzad, A. Guergachi, A. Niazi, and A. Umer, “Classification of Alzheimer's disease using machine learning techniques,” in Proceedings of the 8th International Conference on Data Science, Technology and Applications DATA, vol. 1, Prague, Czech Republic, 2019, pp. 296–303. https://doi.org/10.5220/0007949902960303
  14. L. Liu, S. Zhao, H. Chen, and A. Wang, “A new machine learning method for identifying Alzheimer's disease,” Simulation Modelling Practice and Theory, vol. 99, Feb. 2020, Art. no. 102023. https://doi.org/10.1016/j.simpat.2019.102023
  15. A. Ezzati, A. R. Zammit, D. J. Harvey, C. Habeck, C. B. Hall, and R. B. Lipton, “Optimizing machine learning methods to improve predictive models of Alzheimer’s disease,” Journal of Alzheimer's Disease, vol. 71, no. 3, pp. 1027–1036, Oct. 2019. https://doi.org/10.3233/JAD-190262
  16. S. S. Kundaram and K. C. Pathak, “Deep learning-based Alzheimer disease detection,” in Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems: MCCS 2019, Lecture Notes in Electrical Engineering, vol 673. Springer, Singapore, Sep. 2021. https://doi.org/10.1007/978-981-15-5546-6_50
  17. S. Afzal et al., “Alzheimer disease detection techniques and methods: A review,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 7, pp. 26–38, Apr. 2021. https://doi.org/10.9781/ijimai.2021.04.005
  18. H. T. Gorji and N. Kaabouch, “Brain sciences: A deep learning approach for diagnosis of mild cognitive impairment based on MRI images,” 2019.
  19. S. Spasov, L. Passamonti, A. Duggento, P. Liò, and N. Toschi, “A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease,” Neuroimage, vol. 189, pp. 276–287, Apr. 2019. https://doi.org/10.1016/j.neuroimage.2019.01.031
  20. Y. Zhao et al., “Multi-view prediction of Alzheimer’s disease progression with end-to-end integrated framework,” Journal of Biomedical Informatics, vol. 125, Jan. 2022, Art. no. 103978. https://doi.org/10.1016/j.jbi.2021.103978
  21. I. M. Saied, T. Arslan, and S. Chandran, “Classification of Alzheimer's disease using RF signals and machine learning,” IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 6, no. 1, pp. 77–85, Mar. 2022. https://doi.org/10.1109/JERM.2021.3096172
DOI: https://doi.org/10.2478/acss-2024-0012 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 91 - 97
Submitted on: Mar 23, 2024
Accepted on: Jul 29, 2024
Published on: Aug 15, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Shambhu Kumar Jha, Shambhavi Vats, Rajni Sehgal Kaushik, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.