Have a personal or library account? Click to login

Generative Artificial Intelligence Use in Optimising Software Engineering Process: A Systematic Literature Review

Open Access
|Aug 2024

References

  1. G. Giray, “A software engineering perspective on engineering machine learning systems: State of the art and challenges,” Journal of Systems and Software, vol. 180, Oct. 2021, Art. no. 111031. https://doi.org/10.1016/j.jss.2021.111031
  2. A. Mehra, M. Yadav, and B. Ammu, “GPT history.” [Online]. Available: https://www.kdnuggets.com/2023/05/deep-dive-gpt-models.html. Accessed on: Jan. 03, 2024.
  3. A. Fan et al., “Large language models for software engineering: Survey and open problems,” arXiv.org, Oct. 2023. https://doi.org/10.48550/ARXIV.2310.03533
  4. N. A. Parikh, “Empowering business transformation: The positive impact and ethical considerations of Generative AI in software product management – A systematic literature review,” arXiv.org, Jun. 2023. https://doi.org/10.48550/ARXIV.2306.04605
  5. Z. Zheng et al., “Towards an understanding of large language models in software engineering tasks,” arXiv:2308.11396, Aug. 2023. https://doi.org/10.48550/arXiv.2308.11396
  6. B. Kitchenham and P. Brereton, “A systematic review of systematic review process research in software engineering,” Inf. Softw. Technol., vol. 55, no. 12, pp. 2049–2075, Dec. 2013. https://doi.org/10.1016/j.infsof.2013.07.010
  7. “OpenAI official web site.” [Online]. Available: https://openai.com/blog/openai-api. Accessed: Dec. 26, 2023.
  8. A. Noda, M. Storey, N. Forsgren, and M. Greiler, “DevEX: What actually drives productivity?” Communications of the ACM, vol. 66, no. 11, pp. 44–49, Oct. 2023. https://doi.org/10.1145/3610285
  9. “Nicole Forsgren biography.” [Online]. Available: https://en.wikipedia.org/wiki/Nicole_Forsgren. Accessed: Dec. 26, 2023.
  10. “Nicole Forsgren official web site.” [Online]. Available: https://nicolefv.com/. Accessed on: Dec. 26, 2023.
  11. C. Bird et al., “Taking flight with Copilot,” Communications of the ACM, vol. 66, no. 6, pp. 56–62, May 2023. https://doi.org/10.1145/3589996
  12. “Microsoft Research web site – Bird.” [Online]. Available: https://www.microsoft.com/en-us/research/people/cbird/. Accessed on: Dec. 26, 2023.
  13. N. Forsgren and M. Kersten, “DevOps metrics,” Communications of the ACM, vol. 61, no. 4, pp. 44–48, Mar. 2018. https://doi.org/10.1145/3159169
  14. “Mik Kersten biography.” [Online]. Available: https://en.wikipedia.org/wiki/Mik_Kersten. Accessed on: Dec. 26, 2023.
  15. I. Ozkaya, “The next frontier in software development: AI-augmented software development processes,” IEEE Software, vol. 40, no. 4, 2023. https://doi.org/10.1109/MS.2023.3278056
  16. C. Ebert, P. Louridas, and C. Ebert, “Generative AI for Software Practitioners,” IEEE Softw, pp. 4–9, July-Aug. 2023. https://doi.org/10.1109/MS.2023.3265877
  17. M. Fu and C. Tantithamthavorn, “GPT2SP: A transformer-based agile story point estimation approach,” IEEE Transactions on Software Engineering, vol. 49, no. 2, pp. 611–625, Feb. 2023. https://doi.org/10.1109/TSE.2022.3158252
  18. I. Ozkaya, “Can Architecture Knowledge Guide Software Development With Generative AI?, ” IEEE Software, Sep.-Oct. 2023. https://doi.org/10.1109/MS.2023.3306641
  19. P. Brie, N. Burny, A. Sluÿters, and J. Vanderdonckt, “Evaluating a large language model on searching for GUI layouts,” Proceedings of the ACM on Human-Computer Interaction, vol. 7, no. EICS, Jun. 2023, Art. no. 178. https://doi.org/10.1145/3593230
  20. E. Dinella, T. Mytkowicz, A. Svyatkovskiy, C. Bird, M. Naik, and S. K. Lahiri, “DeepMerge: Learning to merge programs,” IEEE Transactions on Software Engineering, IEEE Transactions on Software Engineering, vol. 49, no. 4, pp. 1599–1614, April 2021. https://doi.org/10.1109/TSE.2022.3183955
  21. Y. Charalambous, N. Tihanyi, R. Jain, Y. Sun, M. Ferrag, and L. Cordeiro, “A new era in software security: Towards self-healing software via large language models and formal verification,” arXiv.org, May 2023. https://doi.org/10.48550/ARXIV.2305.14752
  22. J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software testing with large language model: Survey, landscape, and vision,” arXiv.org, Jul. 2023. https://doi.org/10.48550/ARXIV.2307.07221
  23. M. Shetty, C. Bansal, S. Kumar, N. Rao, N. Nagappan, and T. Zimmermann, “Neural knowledge extraction from cloud service incidents,” in 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), Madrid, Spain, May 2021, pp. 218–227. https://doi.org/10.1109/ICSESEIP52600.2021.00031
  24. P. Mudgal and R. Wouhaybi, “An assessment of ChatGPT on log data,” arXiv.org, Sep. 2023. https://doi.org/10.48550/ARXIV.2309.07938
  25. Y. Park, A. Park, and C. Kim, “ALSI-transformer: Transformer-based code comment generation with aligned lexical and syntactic information,” IEEE Access, vol. 11, pp. 39037–39047, Apr. 2023. https://doi.org/10.1109/ACCESS.2023.3268638
  26. N. Jiang, C. Wang, K. Liu, X. Xu, L. Tan, and X. Zhang, “Nova+: Generative language models for binaries,” arXiv.org, Nov. 2023. https://doi.org/10.48550/ARXIV.2311.13721
DOI: https://doi.org/10.2478/acss-2024-0009 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 68 - 77
Submitted on: Apr 7, 2024
Accepted on: Jul 12, 2024
Published on: Aug 15, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Uldis Karlovs-Karlovskis, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.