W. I. McDonald et al., “Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis,” Annals of Neurology, vol. 50, no. 1, pp. 121–127, Jul. 2021. https://doi.org/10.1002/ana.1032
F. Bethoux and S. Bennett, “Evaluating walking in patients with multiple sclerosis: which assessment tools are useful in clinical practice?” International Journal of MS Care, vol. 13, no. 1, pp. 4–14, 2011. https://doi.org/10.7224/1537-2073-13.1.4
U. Givon, G. Zeilig, and A. Achiron, “Gait analysis in multiple sclerosis: characterization of temporal-spatial parameters using GAITRite functional ambulation system,” Gait & Posture, vol. 29, no. 1, pp. 138– 142, Jan. 2009. https://doi.org/10.1016/j.gaitpost.2008.07.011
J.G. Nutt, F.B. Horak, and R.B. Bloem, “Milestones in gait, balance, and falling,” Movement Disorders: Official Journal of the Movement Disorder Society, vol. 26, no. 6, pp. 1166–1174, May 2011. https://doi.org/10.1002/mds.23588
C. Heesen, J. Böhm, C. Reich, J. Kasper, M. Goebel, and S.M. Gold, “Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable,” Multiple Sclerosis Journal, vol. 14, no. 7, pp. 988–991, 2008. https://doi.org/10.1177/1352458508088916
M. G. Benedetti, R. Piperno, L. Simoncini, P. Bonato, A. Tonini, and S. Giannini, “Gait abnormalities in minimally impaired multiple sclerosis patients,” Multiple Sclerosis Journal, vol. 5, no. 5, pp. 363–368, 1999.
C. L. Martin et al., “Gait and balance impairment in early multiple sclerosis in the absence of clinical disability,” Multiple Sclerosis Journal, vol. 12, no. 5, pp. 620–628, 2006. https://doi.org/10.1177/1352458506070658
E. Morel et al., “Gait Profile Score in multiple sclerosis patients with low disability,” Gait & Posture, vol. 51, pp. 169–173, Jan. 2017. https://doi.org/10.1016/j.gaitpost.2016.10.013
R. LeMoyne, F. Heerinckx, T. Aranca, R. De Jager, T. Zesiewicz, and H.J. Saal, “Wearable body and wireless inertial sensors for machine learning classification of gait for people with Friedreich's ataxia,” in 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, Jun. 2016, pp. 147–151. https://doi.org/10.1109/BSN.2016.7516249
D. Phan, N. Nguyen, P.N. Pathirana, M. Horne, L. Power, and D. Szmulewicz, “A random forest approach for quantifying gait ataxia with truncal and peripheral measurements using multiple wearable sensors,” IEEE Sensors Journal, vol. 20, no. 2, pp. 723–734, Sep. 2019. https://doi.org/10.1109/JSEN.2019.2943879
A. Prochazka, O. Dostal, P. Cejnar, H.I. Mohamed, Z. Pavelek, M. Valis, and O. Vysata, “Deep learning for accelerometric data assessment and ataxic gait monitoring,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 360–367, Jan. 2021. https://doi.org/10.1109/TNSRE.2021.3051093
W. Ilg, J. Seemann, M. Giese, A. Traschütz, L. Schöls, D. Timmann, and M. Synofzik, “Real-life gait assessment in degenerative cerebellar ataxia: Toward ecologically valid biomarkers,” Neurology, vol. 95, no. 9, pp. e1199–e1210, Jul. 2020. https://doi.org/10.1212/WNL.0000000000010176
F. Bilek, F. Balgetir, C.F. Demir, G. Alkan, and S.S. Tuncer, “Quantitative assessment of ataxia in multiple sclerosis patients using spatiotemporal parameters: A relief-based machine learning analysis,” Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin, vol. 31, no. 6, pp. 367– 376, 2021. https://doi.org/10.1055/a-1512-4858
R. Kaur, Z. Chen, R. Motl, M.E. Hernandez, and R. Sowers, “Predicting multiple sclerosis from gait dynamics using an instrumented treadmill: A machine learning approach,” IEEE Transactions on Biomedical Engineering, vol. 68, no. 9, pp. 2666–2677, Sep. 2021. https://doi.org/10.1109/TBME.2020.3048142
B.M. Meyer, L.J. Tulipani, R.D. Gurchiek, D.A. Allen, L. Adamowicz, D. Larie, and R.S. McGinnis, “Wearables and deep learning classify fall risk from gait in multiple sclerosis,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 5, pp. 1824–1831, May 2021. https://doi.org/10.1109/JBHI.2020.3025049
W. Hu, O. Combden, X. Jiang, S. Buragadda, C.J. Newell, M.C. Williams, A.L. Critch, and M. Ploughman, “Machine learning classification of multiple sclerosis patients based on raw data from an instrumented walkway,” Biomedical Engineering Online, vol. 21, Mar. 2022, Art. no. 21. https://doi.org/10.1186/s12938-022-00992-x
M. Alaqtash, T. Sarkodie-Gyan, H. Yu, O. Fuentes, R. Brower, and A. Abdelgawad, “Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, Aug. 2011, pp. 453–457. https://doi.org/10.1109/IEMBS.2011.6090063
S. A. Jannat, T. Hoque, N. A. Supti, and M. A. Alam, “Detection of multiple sclerosis using deep learning,” in 2021 Asian Conference on Innovation in Technology (ASIANCON), PUNE, India, Aug. 2021, pp. 1–8. https://doi.org/10.1109/ASIANCON51346.2021.9544601
R. Shrwan and A. Gupta, “Classification of pituitary tumor and multiple sclerosis brain lesions through convolutional neural networks,” IOP Conference Series: Materials Science and Engineering, vol. 1049, no. 1, 2021, Art. no. 012014. https://doi.org/10.1088/1757-899X/1049/1/012014
Z. Ekşi, M. E. Özean, A. Aralaşmak, E. Dandil, and M. Çakiroğlu, “Automatic computer-aided detection of Multiple Sclerosis (MS) lesions on MR images,” in 2015 19th National Biomedical Engineering Meeting (BIYOMUT), Istanbul, Turkey, Nov. 2015, pp. 1–4. https://doi.org/10.1109/BIYOMUT.2015.7369443
M. Kaya, M. Karakuş, and S. A. Tuncer, “Detection of ataxia with hybrid convolutional neural network using static plantar pressure distribution model in patients with multiple sclerosis,” Computer Methods and Programs in Biomedicine, vol. 214, Feb. 2022, Art. no. 106525. https://doi.org/10.1016/j.cmpb.2021.106525
A. Sesli, S.A. Tuncer, and F. Bilek, “Plantar Basınç Dağılımı Sinyalleri Kullanılarak Erken MSlilerde Ataksinin Hybrt CNN Modelleri ile Belirlenmesi,” Avrupa Bilim ve Teknoloji Dergisi, Ejosat Special Issue 2021 (ICAENS), pp. 579–583, 2021.
A., Marquer, G. Barbieri, and D. Pérennou, “The assessment and treatment of postural disorders in cerebellar ataxia: a systematic review,” Annals of Physical and Rehabilitation Medicine, vol. 57, no. 2, pp. 67– 78, Mar. 2014. https://doi.org/10.1016/j.rehab.2014.01.002
M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” in International Conference on Machine Learning, vol. 97, 2019, pp. 6105–6114. https://proceedings.mlr.press/v97/tan19a.html
C. He, M. Ma, and P. Wang, “Extract interpretability- accuracy balanced rules from artificial neural networks: A review,” Neurocomputing, vol. 387, pp. 346–358, Apr. 2020. https://doi.org/10.1016/j.neucom.2020.01.036