Have a personal or library account? Click to login
Sentiment Analysis Based on Urdu Reviews Using Hybrid Deep Learning Models Cover

Sentiment Analysis Based on Urdu Reviews Using Hybrid Deep Learning Models

Open Access
|Jan 2024

References

  1. Z.U. Rehman and I.S. Bajwa, “Lexicon-based sentiment analysis for Urdu language,” in 2016 Sixth International Conference on Innovative Computing Technology (INTECH), Dublin, Ireland, Aug. 2016, pp. 497–501. https://doi.org/10.1109/INTECH.2016.7845095
  2. N. Mukhtar and M.A. Khan, “Urdu sentiment analysis using supervised machine learning approach,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 32, no. 2, 2018, Art. no. 1851001. https://doi.org/10.1142/S0218001418510011
  3. A. Khattak, M.Z. Asghar, A. Saeed, I.A. Hameed, S.A. Hassan, and S. Ahmad, “A survey on sentiment analysis in Urdu: A resource-poor language,” Egyptian Informatics Journal, vol. 22, no. 1, pp. 53–74, Mar. 2021. https://doi.org/10.1016/j.eij.2020.04.003
  4. U. Naqvi, A. Majid, and S.A. Abbas, “UTSA: Urdu text sentiment analysis using deep learning methods,” IEEE Access, vol. 9, pp. 114085–114094, Aug. 2021. https://doi.org/10.1109/ACCESS.2021.3104308
  5. M.A. Qureshi, M. Asif, M.F. Hassan, A. Abid, A. Kamal, S. Safdar, and R. Akbar, “Sentiment analysis of reviews in natural language: Roman Urdu as a case study,” IEEE Access, vol. 10, pp. 24945–24954, 2022. https://doi.org/10.1109/ACCESS.2022.3150172
  6. I. Rehman and T.R. Soomro, “Urdu sentiment analysis,” Applied Computer Systems, vol. 27, no. 1, pp. 30–42, Aug. 2022. https://doi.org/10.2478/acss-2022-0004
  7. U. Sehar, S. Kanwal, K. Dashtipur, U. Mir, U. Abbasi, and F. Khan, “Urdu sentiment analysis via multimodal data mining based on deep learning algorithms,” IEEE Access, vol. 9, pp. 153072–153082, Oct. 2021. https://doi.org/10.1109/ACCESS.2021.3122025
  8. Z. Nasim and S. Ghani, “Sentiment analysis on Urdu tweets using Markov chains,” SN Computer Science, vol. 1, no. 5, 2020, Art. no. 269. https://doi.org/10.1007/s42979-020-00279-9
  9. R. Bibi, U. Qamar, M. Ansar, and A. Shaheen, May. “Sentiment analysis for Urdu news tweets using decision tree,” in 2019 IEEE 17th international conference on software engineering research, management and applications (SERA), Honolulu, HI, USA, May 2019, pp. 66–70. https://doi.org/10.1109/SERA.2019.8886788
  10. M. Akhtar, R.S. Shoukat, and S.U. Rehman, “A machine learning approach for Urdu text sentiment analysis,” Mehran University Research Journal of Engineering & Technology, vol. 42, no. 2, pp. 75–87, Apr. 2023. https://doi.org/10.22581/muet1982.2302.09
  11. A. Altaf, M.W. Anwar, M.H. Jamal, S. Hassan, U.I. Bajwa, G.S. Choi, and I. Ashraf, “Deep learning based cross domain sentiment classification for Urdu language,” IEEE Access, vol. 10, pp. 102135–102147, Sep. 2022. https://doi.org/10.1109/ACCESS.2022.3208164
  12. L. Khan, A. Amjad, K.M. Afaq, and H.T. Chang, “Deep sentiment analysis using CNN-LSTM architecture of English and Roman Urdu text shared in social media,” Applied Sciences, vol. 12, no. 5, Mar. 2022. Art. no. 2694. https://doi.org/10.3390/app12052694
  13. M.Z. Asghar, A. Sattar, A. Khan, A. Ali, F. M. Kundi, and S. Ahmad, “Creating sentiment lexicon for sentiment analysis in Urdu: The case of a resource‐poor language,” Expert Systems, vol. 36, no. 3, Apr. 2019. Art. no. e12397. https://doi.org/10.1111/exsy.12397
  14. N. Fatima, A.S. Imran, Z. Kastrati, S.M. Daudpota, and A. Soomro, “A systematic literature review on text generation using deep neural network models,” IEEE Access, vol. 10, pp. 53490–53503, May 2022. https://doi.org/10.1109/ACCESS.2022.3174108
  15. A. Sattar and J. Fatima, “Sentiment analysis based on reviews using machine learning techniques,” Pakistan Journal of Engineering and Technology, vol. 4, no. 2, pp. 149–152, Jun. 2021. https://doi.org/10.51846/vol4iss2pp149-152
  16. M. Bilal, H. Israr, M. Shahid, and A. Khan, “Sentiment classification of Roman-Urdu opinions using Naïve Bayesian, Decision Tree and KNN classification techniques,” Journal of King Saud University-Computer and Information Sciences, vol. 28, no. 3, pp. 330–344, Jul. 2016. https://doi.org/10.1016/j.jksuci.2015.11.003
  17. L. Khan, A. Amjad, N. Ashraf, H.T. Chang, and A. Gelbukh, “Urdu sentiment analysis with deep learning methods,” IEEE Access, vol. 9, pp. 97803–97812, 2021. https://doi.org/10.1109/ACCESS.2021.3093078
  18. H. Ghulam, F. Zeng, W. Li, and Y. Xiao, “Deep learning-based sentiment analysis for roman Urdu text,” Procedia Computer Science, vol. 147, pp. 131–135, 2019. https://doi.org/10.1016/j.procs.2019.01.202
  19. A.A. Nagra, K. Alissa, T.M. Ghazal, S. Kukunuru, M.M. Asif, and M. Fawad, “Deep sentiments analysis for Roman Urdu dataset using faster recurrent convolutional neural network model,” Applied Artificial Intelligence, vol. 36, no. 1, Sep. 2022, Art.no. 2123094. https://doi.org/10.1080/08839514.2022.2123094
  20. F. Ullah, X. Chen, S.B.H. Shah, S. Mahfoudh, M.A. Hassan, and N. Saeed, “A novel approach for emotion detection and sentiment analysis for low resource Urdu language based on CNN-LSTM,” Electronics, vol. 11, no. 24, Dec. 2022, Art. no. 4096. https://doi.org/10.3390/electronics11244096
  21. B.A. Chandio, A.S. Imran, M. Bakhtyar, S.M. Daudpota, and J. Baber, “Attention-based RU-BiLSTM sentiment analysis model for Roman Urdu,” Applied Sciences, vol. 12, no. 7, Apr. 2022, Art.no. 3641. https://doi.org/10.3390/app12073641
  22. J. Wei, J. Liao, Z. Yang, S. Wang, and Q. Zhao, “BiLSTM with multi-polarity orthogonal attention for implicit sentiment analysis,” Neurocomputing, vol. 383, pp. 165–173, Mar. 2020. https://doi.org/10.1016/j.neucom.2019.11.054
  23. C.N. Dang, M.N. Moreno-García, and F. De la Prieta, “Hybrid deep learning models for sentiment analysis,” Complexity, vol. 2021, Aug. 2021, Art. no. 9986920. https://doi.org/10.1155/2021/9986920
  24. A.A. Sharfuddin, M.N. Tihami, and M.S. Islam, “A deep recurrent neural network with BiLSTM model for sentiment classification,” in 2018 International conference on Bangla speech and language processing (ICBSLP), Sylhet, Bangladesh, Sep. 2018, pp. 1–4. https://doi.org/10.1109/ICBSLP.2018.8554396
DOI: https://doi.org/10.2478/acss-2023-0026 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 258 - 265
Published on: Jan 29, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Neha Singh, Umesh Chandra Jaiswal, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.