References
- Z.U. Rehman and I.S. Bajwa, “Lexicon-based sentiment analysis for Urdu language,” in 2016 Sixth International Conference on Innovative Computing Technology (INTECH), Dublin, Ireland, Aug. 2016, pp. 497–501. https://doi.org/10.1109/INTECH.2016.7845095
- N. Mukhtar and M.A. Khan, “Urdu sentiment analysis using supervised machine learning approach,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 32, no. 2, 2018, Art. no. 1851001. https://doi.org/10.1142/S0218001418510011
- A. Khattak, M.Z. Asghar, A. Saeed, I.A. Hameed, S.A. Hassan, and S. Ahmad, “A survey on sentiment analysis in Urdu: A resource-poor language,” Egyptian Informatics Journal, vol. 22, no. 1, pp. 53–74, Mar. 2021. https://doi.org/10.1016/j.eij.2020.04.003
- U. Naqvi, A. Majid, and S.A. Abbas, “UTSA: Urdu text sentiment analysis using deep learning methods,” IEEE Access, vol. 9, pp. 114085–114094, Aug. 2021. https://doi.org/10.1109/ACCESS.2021.3104308
- M.A. Qureshi, M. Asif, M.F. Hassan, A. Abid, A. Kamal, S. Safdar, and R. Akbar, “Sentiment analysis of reviews in natural language: Roman Urdu as a case study,” IEEE Access, vol. 10, pp. 24945–24954, 2022. https://doi.org/10.1109/ACCESS.2022.3150172
- I. Rehman and T.R. Soomro, “Urdu sentiment analysis,” Applied Computer Systems, vol. 27, no. 1, pp. 30–42, Aug. 2022. https://doi.org/10.2478/acss-2022-0004
- U. Sehar, S. Kanwal, K. Dashtipur, U. Mir, U. Abbasi, and F. Khan, “Urdu sentiment analysis via multimodal data mining based on deep learning algorithms,” IEEE Access, vol. 9, pp. 153072–153082, Oct. 2021. https://doi.org/10.1109/ACCESS.2021.3122025
- Z. Nasim and S. Ghani, “Sentiment analysis on Urdu tweets using Markov chains,” SN Computer Science, vol. 1, no. 5, 2020, Art. no. 269. https://doi.org/10.1007/s42979-020-00279-9
- R. Bibi, U. Qamar, M. Ansar, and A. Shaheen, May. “Sentiment analysis for Urdu news tweets using decision tree,” in 2019 IEEE 17th international conference on software engineering research, management and applications (SERA), Honolulu, HI, USA, May 2019, pp. 66–70. https://doi.org/10.1109/SERA.2019.8886788
- M. Akhtar, R.S. Shoukat, and S.U. Rehman, “A machine learning approach for Urdu text sentiment analysis,” Mehran University Research Journal of Engineering & Technology, vol. 42, no. 2, pp. 75–87, Apr. 2023. https://doi.org/10.22581/muet1982.2302.09
- A. Altaf, M.W. Anwar, M.H. Jamal, S. Hassan, U.I. Bajwa, G.S. Choi, and I. Ashraf, “Deep learning based cross domain sentiment classification for Urdu language,” IEEE Access, vol. 10, pp. 102135–102147, Sep. 2022. https://doi.org/10.1109/ACCESS.2022.3208164
- L. Khan, A. Amjad, K.M. Afaq, and H.T. Chang, “Deep sentiment analysis using CNN-LSTM architecture of English and Roman Urdu text shared in social media,” Applied Sciences, vol. 12, no. 5, Mar. 2022. Art. no. 2694. https://doi.org/10.3390/app12052694
- M.Z. Asghar, A. Sattar, A. Khan, A. Ali, F. M. Kundi, and S. Ahmad, “Creating sentiment lexicon for sentiment analysis in Urdu: The case of a resource‐poor language,” Expert Systems, vol. 36, no. 3, Apr. 2019. Art. no. e12397. https://doi.org/10.1111/exsy.12397
- N. Fatima, A.S. Imran, Z. Kastrati, S.M. Daudpota, and A. Soomro, “A systematic literature review on text generation using deep neural network models,” IEEE Access, vol. 10, pp. 53490–53503, May 2022. https://doi.org/10.1109/ACCESS.2022.3174108
- A. Sattar and J. Fatima, “Sentiment analysis based on reviews using machine learning techniques,” Pakistan Journal of Engineering and Technology, vol. 4, no. 2, pp. 149–152, Jun. 2021. https://doi.org/10.51846/vol4iss2pp149-152
- M. Bilal, H. Israr, M. Shahid, and A. Khan, “Sentiment classification of Roman-Urdu opinions using Naïve Bayesian, Decision Tree and KNN classification techniques,” Journal of King Saud University-Computer and Information Sciences, vol. 28, no. 3, pp. 330–344, Jul. 2016. https://doi.org/10.1016/j.jksuci.2015.11.003
- L. Khan, A. Amjad, N. Ashraf, H.T. Chang, and A. Gelbukh, “Urdu sentiment analysis with deep learning methods,” IEEE Access, vol. 9, pp. 97803–97812, 2021. https://doi.org/10.1109/ACCESS.2021.3093078
- H. Ghulam, F. Zeng, W. Li, and Y. Xiao, “Deep learning-based sentiment analysis for roman Urdu text,” Procedia Computer Science, vol. 147, pp. 131–135, 2019. https://doi.org/10.1016/j.procs.2019.01.202
- A.A. Nagra, K. Alissa, T.M. Ghazal, S. Kukunuru, M.M. Asif, and M. Fawad, “Deep sentiments analysis for Roman Urdu dataset using faster recurrent convolutional neural network model,” Applied Artificial Intelligence, vol. 36, no. 1, Sep. 2022, Art.no. 2123094. https://doi.org/10.1080/08839514.2022.2123094
- F. Ullah, X. Chen, S.B.H. Shah, S. Mahfoudh, M.A. Hassan, and N. Saeed, “A novel approach for emotion detection and sentiment analysis for low resource Urdu language based on CNN-LSTM,” Electronics, vol. 11, no. 24, Dec. 2022, Art. no. 4096. https://doi.org/10.3390/electronics11244096
- B.A. Chandio, A.S. Imran, M. Bakhtyar, S.M. Daudpota, and J. Baber, “Attention-based RU-BiLSTM sentiment analysis model for Roman Urdu,” Applied Sciences, vol. 12, no. 7, Apr. 2022, Art.no. 3641. https://doi.org/10.3390/app12073641
- J. Wei, J. Liao, Z. Yang, S. Wang, and Q. Zhao, “BiLSTM with multi-polarity orthogonal attention for implicit sentiment analysis,” Neurocomputing, vol. 383, pp. 165–173, Mar. 2020. https://doi.org/10.1016/j.neucom.2019.11.054
- C.N. Dang, M.N. Moreno-García, and F. De la Prieta, “Hybrid deep learning models for sentiment analysis,” Complexity, vol. 2021, Aug. 2021, Art. no. 9986920. https://doi.org/10.1155/2021/9986920
- A.A. Sharfuddin, M.N. Tihami, and M.S. Islam, “A deep recurrent neural network with BiLSTM model for sentiment classification,” in 2018 International conference on Bangla speech and language processing (ICBSLP), Sylhet, Bangladesh, Sep. 2018, pp. 1–4. https://doi.org/10.1109/ICBSLP.2018.8554396