Have a personal or library account? Click to login
AI Chatbot for Tourist Recommendations: A Case Study in Vietnam Cover

AI Chatbot for Tourist Recommendations: A Case Study in Vietnam

Open Access
|Jan 2024

References

  1. A. Khan, N. Khan, and M. Shafiq, “The Economic Impact of COVID-19 from a Global Perspective,” Contemporary Economics, vol. 15, no. 1, pp. 64–75, 2021. https://doi.org/10.5709/ce.1897-9254.436
  2. E. Saluveer et al., “Methodological framework for producing national tourism statistics from mobile positioning data,” Annals of Tourism Research, vol. 81, Mar. 2020, Art. no. 102895. https://doi.org/10.1016/j.annals.2020.102895
  3. N. Comerio and F. Strozzi, “Tourism and its economic impact: A literature review using bibliometric tools,” Tourism Economics, vol. 25, no. 1, pp. 109–131, Aug. 2018. https://doi.org/10.1177/1354816618793762
  4. H. Herath and M. Mittal, “Adoption of artificial intelligence in smart cities: A comprehensive review,” International Journal of Information Management Data Insights, vol. 2, no. 1, Apr. 2022, Art. no. 100076. https://doi.org/10.1016/j.jjimei.2022.100076
  5. J. Bulchand-Gidumal, “Impact of artificial intelligence in travel, tourism, and hospitality,” in Handbook of e-Tourism, Z. Xiang, M. Fuchs, U. Gretzel, and W. Höpken, Eds. Springer, Cham, 2022, pp. 1943–1962. https://doi.org/10.1007/978-3-030-48652-5_110
  6. I. Tussyadiah and G. Miller, “Perceived impacts of artificial intelligence and responses to positive behaviour change intervention,” in Information and Communication Technologies in Tourism 2019, J. Pesonen and J. Neidhardt, Eds. Springer, Cham, Dec. 2018, pp. 359–370. https://doi.org/10.1007/978-3-030-05940-8_28
  7. A. Tlili, B. Shehata, M. A. Adarkwah, A. Bozkurt, D. T. Hickey, R. Huang, and B. Agyemang, “What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education,” Smart Learning Environments, vol. 10, Feb. 2023, Art. no. 15. https://doi.org/10.1186/s40561-023-00237-x
  8. J. Wirtz, P. G. Patterson, W. H. Kunz, T. Gruber, V. N. Lu, S. Paluch, and A. Martins, “Brave new world: service robots in the frontline,” Journal of Service Management, vol. 29, no. 5, pp. 907–931, Sept. 2018. https://doi.org/10.1108/JOSM-04-2018-0119
  9. F. Wotawa, I.-D. Nica, and O. Tazl, “Chatbot-based tourist recommendations using model-based reasoning,” in 20th International Workshop on Configuration, ConfWS, 2018. [Online]. Available: https://ceur-ws.org/Vol-2220/05_CONFWS18_paper_31.pdf
  10. D. C. Ukpabi, B. Aslam, and H. Karjaluoto, “Chatbot adoption in tourism services: A conceptual exploration,” in Robots, Artificial Intelligence, and Service Automation in Travel, Tourism and Hospitality, Emerald Publishing Ltd., Oct. 2019, pp. 105–121. https://doi.org/10.1108/978-1-78756-687-320191006
  11. L. Li, K. Y. Lee, E. Emokpae, and S.-B. Yang, “What makes you continuously use chatbot services? evidence from Chinese online travel agencies,” Electronic Markets, vol. 31, pp. 575–599, Jan. 2021. https://doi.org/10.1007/s12525-020-00454-z
  12. Z. Niu, G. Zhong, and H. Yu, “A review on the attention mechanism of deep learning,” Neurocomputing, vol. 452, pp. 48–62, Sep. 2021. https://doi.org/10.1016/j.neucom.2021.03.091
  13. Z. Fan et al., “Mask attention networks: Rethinking and strengthen transformer,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Jun. 2021, pp. 1692–1701. https://doi.org/10.18653/v1/2021.naacl-main.135
  14. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1, Minneapolis, Minnesota, Jun. 2018, pp. 4171–4186. https://aclanthology.org/N19-1423.pdf
  15. Y. Liu et al., “Roberta: A robustly optimized Bert pretraining approach,” arXiv:1907.11692, Jul. 2019. https://doi.org/10.48550/arXiv.1907.11692
  16. T. Bocklisch, J. Faulkner, N. Pawlowski, and A. Nichol, “Rasa: Open source language understanding and dialogue management,” in NIPS Conversational AI Workshop, CA, USA, 2017. https://arxiv.org/pdf/1712.05181.pdf
  17. Q. Ye, Z. Zhang, and R. Law, “Sentiment classification of online reviews to travel destinations by supervised machine learning approaches,” Expert Systems with Applications, vol. 36, no. 3, pp. 6527–6535, Apr. 2009. https://doi.org/10.1016/j.eswa.2008.07.035
  18. M. Nilashi, K. Bagherifard, M. Rahmani, and V. Rafe, “A recommender system for tourism industry using cluster ensemble and prediction machine learning techniques,” Computers & Industrial Engineering, vol. 109, pp. 357–368, 2017. https://doi.org/10.1016/j.cie.2017.05.016
  19. Z. Abbasi-Moud, H. Vahdat-Nejad, and J. Sadri, “Tourism recommendation system based on semantic clustering and sentiment analysis,” Expert Systems with Applications, vol. 167, Apr. 2021, Art. no. 114324. https://doi.org/10.1016/j.eswa.2020.114324
  20. R. Colomo-Palacios, F. J. García-Peñalvo, V. Stantchev, and S. Misra, “Towards a social and context-aware mobile recommendation system for tourism,” Pervasive and Mobile Computing, vol. 38, no. 2, pp. 505–515, July 2017. https://doi.org/10.1016/j.pmcj.2016.03.001
  21. L. Chen, L. Zhang, S. Cao, Z. Wu, and J. Cao, “Personalized itinerary recommendation: Deep and collaborative learning with textual information,” Expert Systems with Applications, vol. 144, Apr. 2020, Art. no. 113070. https://doi.org/10.1016/j.eswa.2019.113070
  22. R. Anacleto, L. Figueiredo, A. Almeida, and P. Novais, “Mobile application to provide personalized sightseeing tours,” Journal of Network and Computer Applications, vol. 41, pp. 56–64, May 2014. https://doi.org/10.1016/j.jnca.2013.10.005
  23. P.-J. Lee, Y.-H. Hu, and K.-T. Lu, “Assessing the helpfulness of online hotel reviews: A classification-based approach,” Telematics and Informatics, vol. 35, no. 2, pp. 436–445, May 2018. https://doi.org/10.1016/j.tele.2018.01.001
  24. A. Aebli, “Tourists’ motives for gamified technology use,” Annals of Tourism Research, vol. 78, Sep. 2019, Art. no. 102753. https://doi.org/10.1016/j.annals.2019.102753
  25. I. D. Wahyono, K. Asfani, M. M. Mohamad, A. Aripriharta, A. P. Wibawa, and W. Wibisono, “New smart map for tourism using artificial intelligence,” in 2020 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), Malang, Indonesia, Aug. 2020, pp. 213–216. https://doi.org/10.1109/EECCIS49483.2020.9263435
  26. M. Xu, “Research on smart tourism system based on artificial intelligence,” in 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, May 2023, pp. 201–205. https://doi.org/10.1109/ICIBA56860.2023.10165293
  27. P. Wang and J. Shao, “Escaping loneliness through tourist-chatbot interactions,” in Information and Communication Technologies in Tourism 2022, J. L. Stienmetz, B. Ferrer-Rosell, and D. Massimo, Eds. Springer, Cham, 2022, pp. 473–485. https://doi.org/10.1007/978-3-030-94751-4_44
  28. G. Sperlí, “A cultural heritage framework using a deep learning based chatbot for supporting tourist journey,” Expert Systems with Applications, vol. 183, Nov. 2021, Art. no. 115277. https://doi.org/10.1016/j.eswa.2021.115277
  29. A. Argal, S. Gupta, A. Modi, P. Pandey, S. Shim, and C. Choo, “Intelligent travel chatbot for predictive recommendation in echo platform,” in 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, Jan. 2018, pp. 176–183. https://doi.org/10.1109/CCWC.2018.8301732
  30. D. S. Maylawati et al., “Chatbot for virtual travel assistant with random forest and rapid automatic keyword extraction,” in 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED), Sukabumi, Indonesia, Aug. 2021, pp. 1–6. https://doi.org/10.1109/ICCED53389.2021.9664876
  31. H. K. Ahmed and J. A. Hussein, “Design and implementation of a chatbot for Kurdish language speakers using Chatfuel platform,” Kurdistan Journal of Applied Research, vol. 5, no. 2, pp. 117–135, Dec. 2020. https://doi.org/10.24017/science.2020.2.10
  32. R. Goel, T. Singh, S. K. Baral, S. L. Sahdev, and S. Gupta, “The era of artificial intelligence reforming tourism industry in society 5.0,” in 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, Oct. 2022, pp. 1–4. https://doi.org/10.1109/ICRITO56286.2022.9964947
  33. B. Momjian, PostgreSQL: Introduction and Concepts, vol. 192. Addison-Wesley New York, 2001.
  34. X. Chen, Z. Ji, Y. Fan, and Y. Zhan, “Restful API architecture based on laravel framework,” Journal of Physics: Conference Series, vol. 910, Oct. 2017, Art. no. 012016. https://doi.org/10.1088/1742-6596/910/1/012016
  35. S. Axelbrooke, “Customer support on Twitter,” 2017. [Online]. Available: https://www.kaggle.com/datasets/thoughtvector/customer-support-on-twitter?trk=public_profile_project-title
  36. H. L. Vu, K. T. W. Ng, A. Richter, and C. An, “Analysis of input set characteristics and variances on k-fold cross validation for a recurrent neural network model on waste disposal rate estimation,” Journal of Environmental Management, vol. 311, Jun. 2022, Art. no. 114869. https://doi.org/10.1016/j.jenvman.2022.114869
  37. Z. Wang, Y. Lei, H. Cui, H. Miao, D. Zhang, Z. Wu, and G. Liu, “Enhanced RBF neural network metamodelling approach assisted by sliced splitting-based k-fold cross-validation and its application for the stiffened cylindrical shells,” Aerospace Science and Technology, vol. 124, May 2022, Art.no. 107534. https://doi.org/10.1016/j.ast.2022.107534
  38. X. Zhang and C.-A. Liu, “Model averaging prediction by k-fold cross-validation,” Journal of Econometrics, Feb. 2022. https://doi.org/10.2139/ssrn.4032249
  39. J. Roy and S. Saha, “Ensemble hybrid machine learning methods for gully erosion susceptibility mapping: K-fold cross validation approach,” Artificial Intelligence in Geosciences, vol. 3, pp. 28–45, Dec. 2022. https://doi.org/10.1016/j.aiig.2022.07.001
  40. T. R. Shultz et al., “Confusion matrix,” in Encyclopedia of Machine Learning, C. Sammut and G. I. Webb, Eds. Springer, Boston, MA, 2011. https://doi.org/10.1007/978-0-387-30164-8_157
DOI: https://doi.org/10.2478/acss-2023-0023 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 232 - 244
Published on: Jan 29, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Hai Thanh Nguyen, Thien Thanh Tran, Phat Tan Nham, Nhi Uyen Bui Nguyen, Anh Duy Le, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.