References
- D.-Z. Du and P. M. Pardalos, Handbook of Combinatorial Optimization. New York, NY, USA: Springer, 1998. https://doi.org/10.1007/978-1-4613-0303-9
- O. Cheikhrouhou and I. Khouf, “A comprehensive survey on the Multiple Traveling Salesman Problem: Applications, approaches and taxonomy,” Computer Science Review, vol. 40, May 2021, Art. no. 100369. https://doi.org/10.1016/j.cosrev.2021.100369
- B. Golden, L. Bodin, T. Doyle, and W. Stewart, Jr., “Approximate traveling salesman algorithms,” Operations Research, vol. 28, no. 3, pp. 633–846, May–June 1980. https://doi.org/10.1287/opre.28.3.694
- A. Colorni, M. Dorigo, F. Maffioli, V. Maniezzo, G. Righini, and M. Trubian, “Heuristics from nature for hard combinatorial optimization problems,” International Transactions in Operational Research, vol. 3, no. 1, pp. 1–21, Jan. 1996. https://doi.org/10.1016/0969-6016(96)00004-4
- A. Hertz and M. Widmer, “Guidelines for the use of meta-heuristics in combinatorial optimization,” European Journal of Operational Research, vol. 151, no. 2, pp. 247–252, Dec. 2003. https://doi.org/10.1016/S0377-2217(02)00823-8
- L. Kota and K. Jarmai, “Mathematical modeling of multiple tour multiple traveling salesman problem using evolutionary programming,” Applied Mathematical Modelling, vol. 39, no. 12, pp. 3410–3433, June 2015. https://doi.org/10.1016/j.apm.2014.11.043
- R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms. Hoboken, NJ, USA: John Wiley & Sons, 2003. https://doi.org/10.1002/0471671746
- C. Archetti, L. Peirano, and M. G. Speranza, “Optimization in multimodal freight transportation problems: A Survey,” European Journal of Operational Research, vol. 299, no. 1, pp. 1–20, May 2022. https://doi.org/10.1016/j.ejor.2021.07.031
- L. D. Chambers, The Practical Handbook of Genetic Algorithms. Boca Raton, FL, USA: Chapman and Hall/CRC, 2000.
- J. Li, Q. Sun, M. Zhou, and X. Dai, “A new multiple traveling salesman problem and its genetic algorithm-based solution,” in 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 2013, pp. 627–632.
- P. A. Miranda, C. A. Blazquez, C. Obreque, J. Maturana-Ross, and G. Gutierrez-Jarpa, “The bi-objective insular traveling salesman problem with maritime and ground transportation costs,” European Journal of Operational Research, vol. 271, no. 3, pp. 1014–1036, Dec. 2018. https://doi.org/10.1016/j.ejor.2018.05.009
- X. Wu, J. Lu, S. Wu, and X. Zhou, “Synchronizing time-dependent transportation services: Reformulation and solution algorithm using quadratic assignment problem,” Transportation Research Part B: Methodological, vol. 152, pp. 140–179, Oct. 2021. https://doi.org/10.1016/j.trb.2021.08.008
- N. Cabrera, J.-F. Cordeau, and J. E. Mendoza, “The doubly open park-and-loop routing problem,” Computers & Operations Research, vol. 143, July 2022, Art. no. 105761. https://doi.org/10.1016/j.cor.2022.105761
- T. Huang, Y.-J. Gong, S. Kwong, H. Wang, and J. Zhang, “A niching memetic algorithm for multi-solution traveling salesman problem,” IEEE Transactions on Evolutionary Computation, vol. 24, no. 3, pp. 508–522, June 2020. https://doi.org/10.1109/TEVC.2019.2936440
- K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002. https://doi.org/10.1109/4235.996017
- C. L. Valenzuela and A. J. Jones, “Evolutionary divide and conquer (I): A novel genetic approach to the TSP,” Evolutionary Computation, vol. 1, no. 4, pp. 313–333, Dec. 1993. https://doi.org/10.1162/evco.1993.1.4.313
- C.-N. Fiechter, “A parallel tabu search algorithm for large traveling salesman problems,” Discrete Applied Mathematics, vol. 51, no. 3, pp. 243–267, Jul. 1994. https://doi.org/10.1016/0166-218X(92)00033-I
- M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo, “Parallel ant colony optimization for the traveling salesman problem,” in Ant Colony Optimization and Swarm Intelligence. ANTS 2006. Lecture Notes in Computer Science, M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, and T. Stützle, Eds., vol. 4150. Springer, Berlin, Heidelberg, 2006, pp. 224–234. https://doi.org/10.1007/11839088_20
- J. Schneider, C. Froschhammer, I. Morgenstern, T. Husslein, and J. M. Singer, “Searching for backbones – an efficient parallel algorithm for the traveling salesman problem,” Computer Physics Communications, vol. 96, no. 2–3, pp. 173–188, Aug. 1996. https://doi.org/10.1016/0010-4655(96)00062-8
- C. L. Valenzuela and A. J. Jones, “Evolutionary divide and conquer (I): A novel genetic approach to the TSP,” Evolutionary Computation, vol. 1, no. 4, pp. 313–333, Dec. 1993. https://doi.org/10.1162/evco.1993.1.4.313
- D. Blackman and S. Vigna, “Scrambled linear pseudorandom generators,” arXiv:1805.01407, 2018. https://doi.org/10.48550/arXiv.1805.01407
- B. Widynski, “Squares: a fast counter-based RNG,” arXiv:2004.06278, 2020. https://doi.org/10.48550/arXiv.2004.06278
- G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic algorithm,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 287–297, Nov. 1999. https://doi.org/10.1109/4235.797971
- A. Shafiee, M. Arab, Z. Lai, Z. Liu, and A. Abbas, “Automated process flowsheet synthesis for membrane processes using genetic algorithm: role of crossover operators,” in Computer Aided Chemical Engineering, Z. Kravanja and M. Bogataj, Eds., vol. 38. Elsevier, 2016, pp. 1201–1206. https://doi.org/10.1016/B978-0-444-63428-3.50205-8
- D. Thierens, “Scalability problems of simple genetic algorithms,” Evolutionary Computation, vol. 7, no. 4, pp. 331–352, Dec. 1999. https://doi.org/10.1162/evco.1999.7.4.331
- R. Kneusel, Random Numbers and Computers. Switzerland: Springer International Publishing AG, 2018. https://doi.org/10.1007/978-3-319-77697-2
- V. V. Romanuke, “Speedup of the k-means algorithm for partitioning large datasets of flat points by a preliminary partition and selecting initial centroids,” Applied Computer Systems, vol. 28, no. 1, pp. 1–12, June 2023. https://doi.org/10.2478/acss-2023-0001
- D. Arthur and S. Vassilvitskii, “How slow is the k-means method?” in Proceedings of the Twenty-Second Annual Symposium on Computational Geometry (SCG’06), Jun. 2006, pp. 144–153. https://doi.org/10.1145/1137856.1137880
- R. B. Arantes, G. Vogiatzis, and D. R. Faria, “Learning an augmentation strategy for sparse datasets,” Image and Vision Computing, vol. 117, Jan. 2022, Art. no. 104338. https://doi.org/10.1016/j.imavis.2021.104338
- O. N. Almasi and M. Rouhani, “A geometric-based data reduction approach for large low dimensional datasets: Delaunay triangulation in SVM algorithms,” Machine Learning with Applications, vol. 4, Jun. 2021, Art. no. 100025. https://doi.org/10.1016/j.mlwa.2021.100025
- TSP Test Data, Feb. 2009. [Online]. Available: https://math.uwaterloo.ca/tsp/data/index.html
- D. Chan and D. Mercier, “IC insertion: an application of the travelling salesman problem,” International Journal of Production Research, vol. 27, pp. 1837–1841, Oct. 1988. https://doi.org/10.1080/00207548908942657
- R. Kumar and Z. Luo, “Optimizing the operation sequence of a chip placement machine using TSP model,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 26, no. 1, pp. 14–21, Jan. 2003. https://doi.org/10.1109/TEPM.2003.813002
- P. Ball, “DNA computer helps travelling salesman,” Nature, Jan. 2000. https://doi.org/10.1038/news000113-10
- M. Caserta and S. Voß, “A hybrid algorithm for the DNA sequencing problem,” Discrete Applied Mathematics, vol. 163, part 1, pp. 87–99, Jan. 2014. https://doi.org/10.1016/j.dam.2012.08.025
- M. Aicardi, D. Giglio, and R. Minciardi, “Determination of optimal control strategies for TSP by dynamic programming,” in 2008 47th IEEE Conference on Decision and Control, Cancun, Mexico, Dec. 2008, pp. 2160–2167. https://doi.org/10.1109/CDC.2008.4739290
- I. M. Ross, R. J. Proulx, and M. Karpenko, “An optimal control theory for the traveling salesman problem and its variants,” arXiv:2005.03186, 2020. https://doi.org/10.48550/arXiv.2005.03186