Have a personal or library account? Click to login
Multichannel Approach for Sentiment Analysis Using Stack of Neural Network with Lexicon Based Padding and Attention Mechanism Cover

Multichannel Approach for Sentiment Analysis Using Stack of Neural Network with Lexicon Based Padding and Attention Mechanism

Open Access
|Aug 2023

References

  1. L. Yang, Y. Li, J. Wang, and R. S. Sherratt, “Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning,” IEEE Access, vol. 8, pp. 23522–23530, Jan. 2020. https://doi.org/10.1109/ACCESS.2020.2969854
  2. F. Yin, Y. Wang, J. Liu, and L. Lin, “The construction of sentiment lexicon based on context-dependent part-of-speech chunks for semantic disambiguation,” IEEE Access, vol. 8, pp. 63359–63367, Mar. 2020. https://doi.org/10.1109/ACCESS.2020.2984284
  3. M. Huang, H. Xie, Y. Rao, Y. Liu, L. K. M. Poon, and F. L. Wang, “Lexicon-based sentiment convolutional neural networks for online review analysis,” IEEE Transactions on Affective Computing, vol. 13, no. 3, pp. 1337–1348, July-Sept. 2022. https://doi.org/10.1109/TAFFC.2020.2997769
  4. Z. Ren, G. Zeng, L. Chen, Q. Zhang, C. Zhang and D. Pan, “A lexicon-enhanced attention network for aspect-level sentiment analysis,” IEEE Access, vol. 8, pp. 93464–93471, May. 2020. https://doi.org/10.1109/ACCESS.2020.2995211
  5. S. Sanagar and D. Gupta, “Unsupervised genre-based multidomain sentiment lexicon learning using corpus-generated polarity seed words,” IEEE Access, vol. 8, pp. 118050–118071, Jun. 2020. https://doi.org/10.1109/ACCESS.2020.3005242
  6. Y. Wang, G. Huang, J. Li, H. Li, Y. Zhou, and H. Jiang, “Refined global word embeddings based on sentiment concept for sentiment analysis,” IEEE Access, vol. 9, pp. 37075–37085, Mar. 2021. https://doi.org/10.1109/ACCESS.2021.3062654
  7. B.-W. On, J.-Y. Jo, H. Shin, J. Gim, G. S. Choi, and S.-M. Jung, “Efficient sentiment-aware Web crawling methods for constructing sentiment dictionary,” IEEE Access, vol. 9, pp. 161208–161223, Nov. 2021. https://doi.org/10.1109/ACCESS.2021.3129187
  8. O. Wu, T. Yang, M. Li, and M. Li, “Two-level LSTM for sentiment analysis with lexicon embedding and polar flipping,” IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 3867–3879, May 2022. https://doi.org/10.1109/TCYB.2020.3017378
  9. K. Mishev, A. Gjorgjevikj, I. Vodenska, L. T. Chitkushev, and D. Trajanov, “Evaluation of sentiment analysis in finance: From lexicons to transformers,” IEEE Access, vol. 8, pp. 131662–131682, Jul. 2020. https://doi.org/10.1109/ACCESS.2020.3009626
  10. B. M. A. Tahayna, R. K. Ayyasamy, and R. Akbar, “Automatic sentiment annotation of idiomatic expressions for sentiment analysis task,” IEEE Access, vol. 10, pp. 122234–122242, Nov. 2022. https://doi.org/10.1109/ACCESS.2022.3222233
  11. A. A. Raza, A. Habib, J. Ashraf, B. Shah, and F. Moreira, “Semantic orientation of cross lingual sentiments: Employment of lexicon and dictionaries,” IEEE Access, vol. 11, pp. 7617–7629, Jan. 2023. https://doi.org/10.1109/ACCESS.2023.3238207
  12. M. R. Wrobel, “The impact of lexicon adaptation on the emotion mining from software engineering artifacts,” IEEE Access, vol. 8, pp. 48742–48751, Mar. 2020. https://doi.org/10.1109/ACCESS.2020.2979148
  13. L. G. Singh, A. Anil, and S. R. Singh, “SHE: Sentiment hashtag embedding through multitask learning,” IEEE Transactions on Computational Social Systems, vol. 7, no. 2, pp. 417–424, Apr.2020. https://doi.org/10.1109/TCSS.2019.2962718
  14. I.Awajan, M. Mohamad, and A. Al-Quran, “Sentiment analysis technique and neutrosophic set theory for mining and ranking big data from online reviews,” IEEE Access, vol. 9, pp. 47338–47353, Mar. 2021. https://doi.org/10.1109/ACCESS.2021.3067844
  15. A. Rasool, R. Tao, M. Kamyab, and S. Hayat, “GAWA–A feature selection method for hybrid sentiment classification,” IEEE Access, vol. 8, pp. 191850–191861, Oct. 2020. https://doi.org/10.1109/ACCESS.2020.3030642
  16. F. Iqbal et al., “A hybrid framework for sentiment analysis using genetic algorithm based feature reduction,” IEEE Access, vol. 7, pp. 14637–14652, Jan. 2019. https://doi.org/10.1109/ACCESS.2019.2892852
  17. S. Poria, N. Majumder, D. Hazarika, E. Cambria, A. Gelbukh, and A. Hussain, “Multimodal sentiment analysis: Addressing key issues and setting up the baselines,” IEEE Intell. Syst., vol. 33, no. 6, pp. 17–25, Nov.–Dec. 2018. https://doi.org/10.1109/MIS.2018.2882362
  18. S. Wu, F. Wu, Y. Chang, C. Wu, and Y. Huang, “Automatic construction of target-specific sentiment lexicon,” Expert Syst. Appl., vol. 116, pp. 285–298, Feb. 2019. https://doi.org/10.1016/j.eswa.2018.09.024
  19. E. Cambria, S. Poria, D. Hazarika, and K. Kwok, “SenticNet 5: Discovering conceptual primitives for sentiment analysis by means of context embeddings,” in Proc. 32th Int. Conf. Assoc. Adv. Artif. Intell., vol. 32, no. 1, pp. 1795–1802, Apr. 2018. https://doi.org/10.1609/aaai.v32i1.11559
  20. R. Othman, Y. Abdelsadek, K. Chelghoum, I. Kacem, and R. Faiz, “Improving sentiment analysis in Twitter using sentiment specific word embeddings,” in Proc. 10th IEEE Int. Conf. Intell. Data Acquisition Adv. Comput. Systems: Technol. Appl. (IDAACS), Metz, France, Sep. 2019, pp. 854–858. https://doi.org/10.1109/IDAACS.2019.8924403
  21. X. Wang, J. Chen, A. Hawbani, F. Miao, and C. Shao, “Building sentiment lexicon with representation learning based on contrast and label of sentiment,” in Proc. 4th Int. Conf. Big Data Comput. Commun. (BIGCOM), Chicago, IL, USA, Aug. 2018, pp. 151–156. https://doi.org/10.1109/BIGCOM.2018.00032
  22. Y. Wang, Y. Zhang, and B. Liu, “Sentiment lexicon expansion based on neural PU learning double dictionary lookup and polarity association,” in Proc. Conf. Empirical Methods Natural Lang. Process., Copenhagen, Denmark, Sep. 2017, pp. 553–563. https://doi.org/10.18653/v1/D17-1059
  23. Q. Yang, Y. Rao, H. Xie, J. Wang, F. L. Wang, and W. H. Chan, “Segment-level joint topic-sentiment model for online review analysis,” IEEE Intell. Syst., vol. 34, no. 1, pp. 43–50, Jan.-Feb. 2019. https://doi.org/10.1109/MIS.2019.2899142
  24. Z. Lei, Y. Yang, and M. Yang, “Sentiment lexicon enhanced attention-based LSTM for sentiment classification,” in Proc. Nat. Conf. Artif. Intell., vol. 32, no. 1, Apr. 2018, pp. 8105–8106. https://doi.org/10.1609/aaai.v32i1.12142
  25. C. Wu, F. Wu, J. Liu, Y. Huang, and X. Xie, “Sentiment lexicon enhanced neural sentiment classification,” in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., Nov. 2019, pp. 1091–1100. https://doi.org/10.1145/3357384.3357973
  26. Y. Cao, Y. Cao, S. Wen, T. Huang, and Z. Zeng, “Passivity analysis of delayed reaction-diffusion memristor-based neural networks,” Neural Netw., vol. 109, pp. 159–167, Jan. 2019. https://doi.org/10.1016/j.neunet.2018.10.004
  27. Y. Cao, S. Wang, Z. Guo, T. Huang, and S. Wen, “Synchronization of memristive neural networks with leakage delay and parameters mismatch via event-triggered control,” Neural Netw., vol. 119, pp. 178–189, Nov. 2019. https://doi.org/10.1016/j.neunet.2019.08.011
  28. M. Dong, S. Wen, Z. Zeng, Z. Yan, and T. Huang, “Sparse fully convolutional network for face labeling,” Neurocomputing, vol. 331, pp. 465–472, Feb. 2019. https://doi.org/10.1016/j.neucom.2018.11.079
DOI: https://doi.org/10.2478/acss-2023-0013 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 137 - 147
Published on: Aug 17, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Venkateswara Rao Kota, M. Shyamala Devi, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.