References
- L. Yang, Y. Li, J. Wang, and R. S. Sherratt, “Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning,” IEEE Access, vol. 8, pp. 23522–23530, Jan. 2020. https://doi.org/10.1109/ACCESS.2020.2969854
- F. Yin, Y. Wang, J. Liu, and L. Lin, “The construction of sentiment lexicon based on context-dependent part-of-speech chunks for semantic disambiguation,” IEEE Access, vol. 8, pp. 63359–63367, Mar. 2020. https://doi.org/10.1109/ACCESS.2020.2984284
- M. Huang, H. Xie, Y. Rao, Y. Liu, L. K. M. Poon, and F. L. Wang, “Lexicon-based sentiment convolutional neural networks for online review analysis,” IEEE Transactions on Affective Computing, vol. 13, no. 3, pp. 1337–1348, July-Sept. 2022. https://doi.org/10.1109/TAFFC.2020.2997769
- Z. Ren, G. Zeng, L. Chen, Q. Zhang, C. Zhang and D. Pan, “A lexicon-enhanced attention network for aspect-level sentiment analysis,” IEEE Access, vol. 8, pp. 93464–93471, May. 2020. https://doi.org/10.1109/ACCESS.2020.2995211
- S. Sanagar and D. Gupta, “Unsupervised genre-based multidomain sentiment lexicon learning using corpus-generated polarity seed words,” IEEE Access, vol. 8, pp. 118050–118071, Jun. 2020. https://doi.org/10.1109/ACCESS.2020.3005242
- Y. Wang, G. Huang, J. Li, H. Li, Y. Zhou, and H. Jiang, “Refined global word embeddings based on sentiment concept for sentiment analysis,” IEEE Access, vol. 9, pp. 37075–37085, Mar. 2021. https://doi.org/10.1109/ACCESS.2021.3062654
- B.-W. On, J.-Y. Jo, H. Shin, J. Gim, G. S. Choi, and S.-M. Jung, “Efficient sentiment-aware Web crawling methods for constructing sentiment dictionary,” IEEE Access, vol. 9, pp. 161208–161223, Nov. 2021. https://doi.org/10.1109/ACCESS.2021.3129187
- O. Wu, T. Yang, M. Li, and M. Li, “Two-level LSTM for sentiment analysis with lexicon embedding and polar flipping,” IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 3867–3879, May 2022. https://doi.org/10.1109/TCYB.2020.3017378
- K. Mishev, A. Gjorgjevikj, I. Vodenska, L. T. Chitkushev, and D. Trajanov, “Evaluation of sentiment analysis in finance: From lexicons to transformers,” IEEE Access, vol. 8, pp. 131662–131682, Jul. 2020. https://doi.org/10.1109/ACCESS.2020.3009626
- B. M. A. Tahayna, R. K. Ayyasamy, and R. Akbar, “Automatic sentiment annotation of idiomatic expressions for sentiment analysis task,” IEEE Access, vol. 10, pp. 122234–122242, Nov. 2022. https://doi.org/10.1109/ACCESS.2022.3222233
- A. A. Raza, A. Habib, J. Ashraf, B. Shah, and F. Moreira, “Semantic orientation of cross lingual sentiments: Employment of lexicon and dictionaries,” IEEE Access, vol. 11, pp. 7617–7629, Jan. 2023. https://doi.org/10.1109/ACCESS.2023.3238207
- M. R. Wrobel, “The impact of lexicon adaptation on the emotion mining from software engineering artifacts,” IEEE Access, vol. 8, pp. 48742–48751, Mar. 2020. https://doi.org/10.1109/ACCESS.2020.2979148
- L. G. Singh, A. Anil, and S. R. Singh, “SHE: Sentiment hashtag embedding through multitask learning,” IEEE Transactions on Computational Social Systems, vol. 7, no. 2, pp. 417–424, Apr.2020. https://doi.org/10.1109/TCSS.2019.2962718
- I.Awajan, M. Mohamad, and A. Al-Quran, “Sentiment analysis technique and neutrosophic set theory for mining and ranking big data from online reviews,” IEEE Access, vol. 9, pp. 47338–47353, Mar. 2021. https://doi.org/10.1109/ACCESS.2021.3067844
- A. Rasool, R. Tao, M. Kamyab, and S. Hayat, “GAWA–A feature selection method for hybrid sentiment classification,” IEEE Access, vol. 8, pp. 191850–191861, Oct. 2020. https://doi.org/10.1109/ACCESS.2020.3030642
- F. Iqbal et al., “A hybrid framework for sentiment analysis using genetic algorithm based feature reduction,” IEEE Access, vol. 7, pp. 14637–14652, Jan. 2019. https://doi.org/10.1109/ACCESS.2019.2892852
- S. Poria, N. Majumder, D. Hazarika, E. Cambria, A. Gelbukh, and A. Hussain, “Multimodal sentiment analysis: Addressing key issues and setting up the baselines,” IEEE Intell. Syst., vol. 33, no. 6, pp. 17–25, Nov.–Dec. 2018. https://doi.org/10.1109/MIS.2018.2882362
- S. Wu, F. Wu, Y. Chang, C. Wu, and Y. Huang, “Automatic construction of target-specific sentiment lexicon,” Expert Syst. Appl., vol. 116, pp. 285–298, Feb. 2019. https://doi.org/10.1016/j.eswa.2018.09.024
- E. Cambria, S. Poria, D. Hazarika, and K. Kwok, “SenticNet 5: Discovering conceptual primitives for sentiment analysis by means of context embeddings,” in Proc. 32th Int. Conf. Assoc. Adv. Artif. Intell., vol. 32, no. 1, pp. 1795–1802, Apr. 2018. https://doi.org/10.1609/aaai.v32i1.11559
- R. Othman, Y. Abdelsadek, K. Chelghoum, I. Kacem, and R. Faiz, “Improving sentiment analysis in Twitter using sentiment specific word embeddings,” in Proc. 10th IEEE Int. Conf. Intell. Data Acquisition Adv. Comput. Systems: Technol. Appl. (IDAACS), Metz, France, Sep. 2019, pp. 854–858. https://doi.org/10.1109/IDAACS.2019.8924403
- X. Wang, J. Chen, A. Hawbani, F. Miao, and C. Shao, “Building sentiment lexicon with representation learning based on contrast and label of sentiment,” in Proc. 4th Int. Conf. Big Data Comput. Commun. (BIGCOM), Chicago, IL, USA, Aug. 2018, pp. 151–156. https://doi.org/10.1109/BIGCOM.2018.00032
- Y. Wang, Y. Zhang, and B. Liu, “Sentiment lexicon expansion based on neural PU learning double dictionary lookup and polarity association,” in Proc. Conf. Empirical Methods Natural Lang. Process., Copenhagen, Denmark, Sep. 2017, pp. 553–563. https://doi.org/10.18653/v1/D17-1059
- Q. Yang, Y. Rao, H. Xie, J. Wang, F. L. Wang, and W. H. Chan, “Segment-level joint topic-sentiment model for online review analysis,” IEEE Intell. Syst., vol. 34, no. 1, pp. 43–50, Jan.-Feb. 2019. https://doi.org/10.1109/MIS.2019.2899142
- Z. Lei, Y. Yang, and M. Yang, “Sentiment lexicon enhanced attention-based LSTM for sentiment classification,” in Proc. Nat. Conf. Artif. Intell., vol. 32, no. 1, Apr. 2018, pp. 8105–8106. https://doi.org/10.1609/aaai.v32i1.12142
- C. Wu, F. Wu, J. Liu, Y. Huang, and X. Xie, “Sentiment lexicon enhanced neural sentiment classification,” in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., Nov. 2019, pp. 1091–1100. https://doi.org/10.1145/3357384.3357973
- Y. Cao, Y. Cao, S. Wen, T. Huang, and Z. Zeng, “Passivity analysis of delayed reaction-diffusion memristor-based neural networks,” Neural Netw., vol. 109, pp. 159–167, Jan. 2019. https://doi.org/10.1016/j.neunet.2018.10.004
- Y. Cao, S. Wang, Z. Guo, T. Huang, and S. Wen, “Synchronization of memristive neural networks with leakage delay and parameters mismatch via event-triggered control,” Neural Netw., vol. 119, pp. 178–189, Nov. 2019. https://doi.org/10.1016/j.neunet.2019.08.011
- M. Dong, S. Wen, Z. Zeng, Z. Yan, and T. Huang, “Sparse fully convolutional network for face labeling,” Neurocomputing, vol. 331, pp. 465–472, Feb. 2019. https://doi.org/10.1016/j.neucom.2018.11.079