Have a personal or library account? Click to login
An Approach for Counting Breeding Eels Using Mathematical Morphology Operations and Boundary Detection Cover

An Approach for Counting Breeding Eels Using Mathematical Morphology Operations and Boundary Detection

Open Access
|Jan 2023

References

  1. [1] N. T. Tuan, “An overview of the anguillid eel culture in Vietnam,” Journal of Aquaculture and Marine Biology, vol. 10, no. 3, pp. 96–101, Jun. 2021. https://doi.org/10.15406/jamb.2021.10.00312
  2. [2] G. Farjon, O. Krikeb, A.B. Hillel, and V. Alchanatis, “Detection and counting of flowers on apple trees for better chemical thinning decisions,” Precision Agric, vol. 21, pp. 503–521, 2020. https://doi.org/10.1007/s11119-019-09679-1
  3. [3] B. T. Kitano, C. C. T. Mendes, A. R. Geus, H. C. Oliveira, and J. R. Souza, “Corn plant counting using deep learning and UAV images,” IEEE Geoscience and Remote Sensing Letters, pp. 1–5, Aug. 2019. https://doi.org/10.1109/LGRS.2019.2930549
  4. [4] M. Machefer, F. Lemarchand, V. Bonnefond, A. Hitchins, and P. Sidiropoulos, “Mask r-CNN refitting strategy for plant counting and sizing in UAV imagery,” Remote Sensing, vol. 12, no. 18, Art. no. 3015, Sep. 2020. https://doi.org/10.3390/rs12183015
  5. [5] D. Li, Z. Miao, F. Peng, L. Wang, Y. Hao, Z. Wang, T. Chen, H. Li, and Y. Zheng, “Automatic counting methods in aquaculture: A review,” Journal of the World Aquaculture Society, vol. 52, no. 2, pp. 269–283, Apr. 2021. https://doi.org/10.1111/jwas.12745
  6. [6] Q. Zhang, Y. Liu, C. Gong, Y. Chen, and H. Yu, “Applications of deep learning for dense scenes analysis in agriculture: A review,” Sensors, vol. 20, no. 5, Art. no. 1520, Mar. 2020. https://doi.org/10.3390/s20051520708550532164200
  7. [7] Y. Zhong, J. Gao, Q. Lei, and Y. Zhou, “A vision-based counting and recognition system for flying insects in intelligent agriculture,” Sensors, vol. 18, no. 5, Art. no. 1489, May 2018. https://doi.org/10.3390/s18051489598214329747429
  8. [8] Q.-J. Wang, S.-Y. Zhang, S.-F. Dong, G.-C. Zhang, J. Yang, R. Li, and H.-Q. Wang, “Pest24: A large-scale very small object data set of agricultural pests for multi-target detection,” Computers and Electronics in Agriculture, vol. 175, Art. no. 105585, Aug. 2020. https://doi.org/10.1016/j.compag.2020.105585
  9. [9] M. Tian, H. Guo, H. Chen, Q. Wang, C. Long, and Y. Ma, “Automated pig counting using deep learning,” Computers and Electronics in Agriculture, vol. 163, Art. no. 104840, Aug. 2019. https://doi.org/10.1016/j.compag.2019.05.049
  10. [10] S. Xie, R. Girshick, P. Dolla´r, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” arXiv, 2016. [Online]. Available: https://arxiv.org/abs/1611.0543110.1109/CVPR.2017.634
  11. [11] W. Li, P. Chen, B. Wang, and C. Xie, “Automatic localization and count of agricultural crop pests based on an improved deep learning pipeline,” Scientific Reports, vol. 9, Art. no. 7024, May 2019. https://doi.org/10.1038/s41598-019-43171-0650493731065055
  12. [12] E. A. Awalludin, T. N. T. Arsad, and W. N. J. H. W. Yussof, “A review on image processing techniques for fisheries application,” Journal of Physics: Conference Series, vol. 1529, no. 5, Art. no. 052031, May 2020. https://doi.org/10.1088/1742-6596/1529/5/052031
  13. [13] D. Li and L. Du, “Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish,” Artificial Intelligence Review, vol. 55, pp. 4077–4116, Nov. 2021. https://doi.org/10.1007/s10462-021-10102-3
  14. [14] J. Hu, D. Li, Q. Duan, Y. Han, G. Chen, and X. Si, “Fish species classification by color, texture and multi-class support vector machine using computer vision,” Computers and Electronics in Agriculture, vol. 88, pp. 133–140, Oct. 2012. https://doi.org/10.1016/j.compag.2012.07.008
  15. [15] L. Li and J. Hong, “Identification of fish species based on image processing and statistical analysis research,” in 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, China, Aug. 2014, pp. 1155–1160. https://doi.org/10.1109/ICMA.2014.6885861
  16. [16] K. M. Knausgård, A. Wiklund, T. K. Sørdalen, K. T. Halvorsen, A. R. Kleiven, L. Jiao, and M. Goodwin, “Temperate fish detection and classification: a deep learning based approach,” Applied Intelligence, vol. 52, no. 6, pp. 6988–7001, Mar. 2021. https://doi.org/10.1007/s10489-020-02154-9
  17. [17] M. Jahanbakht, W. Xiang, N. J. Waltham, and M. R. Azghadi, “Distributed deep learning in the cloud and energy-efficient real-time image processing at the edge for fish segmentation in underwater videos,” IEEE Access, vol. 10, pp. 117796–117807, Aug. 2022. https://doi.org/10.1109/ACCESS.2022.3202975
  18. [18] S. Saputra, A. Yudhana, and R. Umar, “Implementation of naïve Bayes for fish freshness identification based on image processing,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 3, pp. 412–420, Jun. 2022. https://doi.org/10.29207/resti.v6i3.4062
  19. [19] A. M. A. Aziz, I. Ahmad, S. M. M. Maharum, and Z. Mansor, “The development of a fish counting monitoring system using image processing,” in Advanced Materials and Engineering Technologies. Advanced Structured Materials, A. Ismail, W.M. Dahalan, and A. Öchsner, Eds. Springer, Cham, 2022, pp.255–262. https://doi.org/10.1007/978-3-030-92964-0_25
  20. [20] L. T. M. D. Braga, A. Giraldo, and A. L. Godinho, “Evaluation of three methods for manually counting fish in dam turbines using DIDSON,” Hydrobiologia, vol. 849, pp. 309–321, May 2021. https://doi.org/10.1007/s10750-021-04605-x
  21. [21] C. S. Costa, V. A. G. Zanoni, L. R. V. Curvo, M. de Arau´jo Carvalho, W. R. Boscolo, A. Signor, M. dos Santos de Arruda, H. H. P. Nucci, J. M. Junior, W. N. Gonc¸alves, O. Diemer, and H. Pistori, “Deep learning applied in fish reproduction for counting larvae in images captured by smartphone,” Aquacultural Engineering, vol. 97, Art. no. 102225, May 2022. https://doi.org/10.1016/j.aquaeng.2022.102225
  22. [22] Y. Wageeh, H. E.-D. Mohamed, A. Fadl, O. Anas, N. ElMasry, A. Nabil, and A. Atia, “YOLO fish detection with euclidean tracking in fish farms,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 1, pp. 5–12, Jan. 2021. https://doi.org/10.1007/s12652-020-02847-6
  23. [23] J.-T. Yu, R.-S. Jia, Y.-C. Li, and H.-M. Sun, “Automatic fish counting via a multi-scale dense residual network,” Multimedia Tools and Applications, vol. 81, pp. 17223–17243, Mar. 2022. https://doi.org/10.1007/s11042-022-12672-y
  24. [24] J. Wu, Y. Zhou, H. Yu, Y. Zhang, and J. Li, “A novel fish counting method with adaptive weighted multi-dilated convolutional neural net-work,” in 2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), London, United Kingdom, Dec. 2021, pp. 178–183. https://doi.org/10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00039
  25. [25] T. H. Khai, S. N. H. S. Abdullah, M. K. Hasan, and A. Tarmizi, “Underwater fish detection and counting using mask regional convolutional neural network,” Water, vol. 14, no. 2, Art. no. 222, Jan. 2022. https://doi.org/10.3390/w14020222
  26. [26] N. Garcia-d’Urso, A. Galan-Cuenca, P. Pérez-Sánchez, P. Climent-Pérez, A. Fuster-Guillo, J. Azorin-Lopez, M. Saval-Calvo, J. E. Guillén-Nieto, and G. Soler-Capdepón, “The DeepFish computer vision dataset for fish instance segmentation, classification, and size estimation,” Scientific Data, vol. 9, Art. no. 287, Jun. 2022. https://doi.org/10.1038/s41597-022-01416-0
  27. [27] P. Schober, M. H. Najafi, and N. Taherinejad, “High-accuracy multiply-accumulate (MAC) technique for unary stochastic computing,” IEEE Transactions on Computers, vol. 71, no. 6, pp. 1425–1439, Jun. 2022. https://doi.org/10.1109/tc.2021.3087027
  28. [28] MathWorks team, “Bioinformatics Toolbox: User’s Guide (R2022a): Types of Morphological Operations - MATLAB & Simulink.” MathWorks [Online]. Available: https://www.mathworks.com/help/images/morphological-dilationand-erosion.html
  29. [29] E. R. Dougherty, An Introduction to Morphological Image Processing. Bellingham, WA: SPIE Press, Jan. 1992.
  30. [30] J. J. Serra, Image Analysis and Mathematical Morphology. San Diego, CA: Academic Press, 1983.
  31. [31] W.-J. Kim, S.-D. Kim, and K. Kim, “Fast algorithms for binary dilation and erosion using run-length encoding,” ETRI Journal, vol. 27, no. 6, pp. 814–817, Dec. 2005. https://doi.org/10.4218/etrij.05.0205.0013
  32. [32] K. Valladares-Yánez, A. Monroy-Meza, R. Suárez-Rivera, J. Rodriguez-Reséndiz, G. Pérez-Soto, and K. Camarillo-Gómez, “Development and implementation of a vision system for decision making in the movements control of humanoid robots,” in 2018 XX Congreso Mexicano de Robótica (COMRob), Ensenada, Mexico, Sep 2018, pp. 1–6. https://doi.org/10.1109/comrob.2018.8689417
  33. [33] M. Kahra, V. Sridhar, and M. Breuß, “Fast morphological dilation and erosion for grey scale images using the Fourier transform,” in Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science, A. Elmoataz, J. Fadili, Y. Quéau, J. Rabin, and L. Simon, Eds., vol 12679. Springer, Cham. Apr. 2021, pp. 65–77. https://doi.org/10.1007/978-3-030-75549-2_6
DOI: https://doi.org/10.2478/acss-2022-0012 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 110 - 118
Published on: Jan 24, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 An Cong Tran, Anh Nhut Nguyen Chau, Nghi Cong Tran, Hai Thanh Nguyen, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.