Have a personal or library account? Click to login
Nine-Point Iterated Rectangle Dichotomy for Finding All Local Minima of Unknown Bounded Surface Cover

Nine-Point Iterated Rectangle Dichotomy for Finding All Local Minima of Unknown Bounded Surface

By: Vadim Romanuke  
Open Access
|Jan 2023

References

  1. [1] M. L. Lial, R. N. Greenwell, and N. P. Ritchey, Calculus with Applications (11th edition). Pearson, 2016.
  2. [2] L. D. Hoffmann, G. L. Bradley, and K. H. Rosen, Applied Calculus for Business, Economics, and the Social and Life Sciences. McGraw-Hill Higher Education, 2005.
  3. [3] S. A. Vavasis, “Complexity issues in global optimization: A survey,” in Handbook of Global Optimization. Nonconvex Optimization and Its Applications, vol. 2, R. Horst and P. M. Pardalos, Eds. Springer, Boston, MA, 1995, pp. 27–41. https://doi.org/10.1007/978-1-4615-2025-2_2
  4. [4] J. Stewart, Calculus: Early Transcendentals (6th edition). Brooks/Cole, 2008.
  5. [5] E. Hewitt and K. R. Stromberg, Real and Abstract Analysis. Springer, 1965. https://doi.org/10.1007/978-3-642-88044-5
  6. [6] K. R. Stromberg, Introduction to Classical Real Analysis. Wadsworth, 1981.
  7. [7] R. Fletcher, Practical Methods of Optimization (2nd edition). J. Wiley and Sons, Chichester, 1987.
  8. [8] J. Kiefer, “Sequential minimax search for a maximum,” Proceedings of the American Mathematical Society, vol. 4, no. 3, pp. 502–506, 1953. https://doi.org/10.2307/2032161
  9. [9] M. Avriel and D. J. Wilde, “Optimality proof for the symmetric Fibonacci search technique,” Fibonacci Quarterly, no. 4, pp. 265–269, 1966.10.1080/00150517.1966.12431364
  10. [10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Minimization or maximization of functions,” in Numerical Recipes: The Art of Scientific Computing (3rd edition), Cambridge University Press, New York, 2007, pp. 487–562.
  11. [11] K. J. Overholt, “Efficiency of the Fibonacci search method,” BIT Numerical Mathematics, vol. 13, no. 1, pp. 92–96, Mar. 1973. https://doi.org/10.1007/BF01933527
  12. [12] S. Edelkamp and S. Schrödl, “Chapter 7 – Symbolic search,” in Heuristic Search, S. Edelkamp, S. Schrödl, Eds. Morgan Kaufmann, 2012, pp. 283–318. https://doi.org/10.1016/B978-0-12-372512-7.00007-9
  13. [13] Ş. E. Amrahov, A. S. Mohammed, and F. V. Çelebi, “New and improved search algorithms and precise analysis of their average-case complexity,” Future Generation Computer Systems, vol. 95, pp. 743–753, Jun. 2019. https://doi.org/10.1016/j.future.2019.01.043
  14. [14] G. S. Rani, S. Jayan, and K. V. Nagaraja, “An extension of golden section algorithm for n-variable functions with MATLAB code,” in IOP Conf. Series: Materials Science and Engineering, IOP Publishing, 2019, vol. 577, Art. no. 012175. https://doi.org/10.1088/1757-899X/577/1/012175
  15. [15] A. Kheldoun, R. Bradai, R. Boukenoui, and A. Mellit, “A new Golden Section method-based maximum power point tracking algorithm for photovoltaic systems,” Energy Conversion and Management, no. 111, pp. 125–136, Mar. 2016. https://doi.org/10.1016/j.enconman.2015.12.039
  16. [16] J.-D. Lee, C.-H. Chen, J.-Y. Lee, L.-M. Chien, and Y.-Y. Sun, “The Fibonacci search for cornerpoint detection of two-dimensional images,” Mathematical and Computer Modelling: An International Journal, vol. 16, no. 11, pp. 15–20, Nov. 1992. https://doi.org/10.1016/0895-7177(92)90102-Q
  17. [17] L. D. Chambers, Ed. The Practical Handbook of Genetic Algorithms: Applications (2nd edition). Chapman and Hall/CRC, 2000. https://doi.org/10.1201/9781420035568
  18. [18] D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, 1989.
  19. [19] R. Horst and P. M. Pardalos, Eds., Handbook of Global Optimization. Nonconvex Optimization and Its Applications, vol. 2. Springer, Boston, MA, 1995. https://doi.org/10.1007/978-1-4615-2025-2
  20. [20] F. Neri, G. Iacca, and E. Mininno, “Compact optimization” in Handbook of Optimization. From Classical to Modern Approach, I. Zelinka, V. Snášel, and A. Abraham, Eds. Springer-Verlag Berlin Heidelberg, 2013, pp. 337–364. https://doi.org/10.1007/978-3-642-30504-7_14
  21. [21] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms,” in KDD’13 Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, Chicago, Illinois, USA, Aug. 2013, pp. 847–855. https://doi.org/10.1145/2487575.2487629
  22. [22] H. Cai, J. Lin, and S. Han, “Chapter 4 – Efficient methods for deep learning,” in Computer Vision and Pattern Recognition. Advanced Methods and Deep Learning in Computer Vision, E. R. Davies and M. A. Turk, Eds. Academic Press, 2022, pp. 159–190. https://doi.org/10.1016/B978-0-12-822109-9.00013-8
  23. [23] J. Waring, C. Lindvall, and R. Umeton, “Automated machine learning: Review of the state-of-the-art and opportunities for healthcare,” Artificial Intelligence in Medicine, vol. 104, Art. no. 101822, Apr. 2020. https://doi.org/10.1016/j.artmed.2020.10182232499001
DOI: https://doi.org/10.2478/acss-2022-0010 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 89 - 100
Published on: Jan 24, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Vadim Romanuke, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.