Have a personal or library account? Click to login
Detection of Driver Dynamics with VGG16 Model Cover

Detection of Driver Dynamics with VGG16 Model

Open Access
|Aug 2022

References

  1. [1] O. Ursulescu, B. Ilie, and G. Simion, “Driver drowsiness detection based on eye analysis”, in 2018 International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 2018, pp. 1–4. https://doi.org/10.1109/ISETC.2018.8583852
  2. [2] R. O. Mbouna, S. G. Kong, and M. G. Chun, “Visual analysis of eye state and head pose for driver alertness monitoring”, IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1462–1469, Sep. 2013. https://doi.org/10.1109/TITS.2013.2262098
  3. [3] S. Chinara,”Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal”, Journal of Neuroscience Methods, vol. 347, 2021, Art no. 108927. https://doi.org/10.1016/j.jneumeth.2020.10892732941920
  4. [4] M. Dua, R. Singla, S. Raj, and A. Jangra, “Deep CNN models-based ensemble approach to driver drowsiness detection”, Neural Computing and Applications, vol. 33, no. 8, pp. 3155–3168, Jul. 2021. https://doi.org/10.1007/s00521-020-05209-7
  5. [5] K. Dwivedi, K. Biswaranjan, and A. Sethi, “Drowsy driver detection using representation learning”, in Advance Computing Conference (IACC), Gurgaon, India, Mar. 2014, pp. 995–999. https://doi.org/10.1109/IAdCC.2014.6779459
  6. [6] S. Park, F. Pan, S. Kang, and C. D. Yoo, “Driver drowsiness detection system based on feature representation learning using various deep networks”, in Asian Conference on Computer Vision, Taipei, Taiwan, Nov. 2016, pp. 154–164. https://doi.org/10.1007/978-3-319-54526-4_12
  7. [7] S. Abtahi, M. Omidyeganeh, S. Shirmohammadi, and B. Hariri, “YawDD: A yawning detection dataset”, in Proceedings of the 5th ACM Multimedia Systems Conference, Singapore, Mar. 2014, pp. 24–28. https://doi.org/10.1145/2557642.2563678
  8. [8] D. Cireşan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image classification”, arXiv: 1202.2745, Tech Rep. No. IDSIA-04-12, Feb. 2012. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://arxiv.org/pdf/1202.2745.pdf
  9. [9] B. Boser, J. D. Y. Le Cun, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Handwritten digit recognition with a back-propagation network”, Advances in Neural Information Processing, vol. 2, 1989.
  10. [10] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, arXiv, preprint arXiv:1409.1556, 2014.
  11. [11] J. Gwak, A. Hirao, and M. Shino, “An investigation of early detection of driver drowsiness using ensemble machine learning based on hybrid sensing”, Appl. Sci., vol. 10, no. 8, Apr. 2020, Art no. 2890. https://doi.org/10.3390/app10082890
  12. [12] S. Mehta, S. Dadhich, S. Gumber, and A. J. Bhatt, “Real-time driver drowsiness detection system using eye aspect ratio and eye closure ratio”, in Proceedings of international conference on sustainable computing in science, technology and management (SUSCOM), Jaipur, India, Feb. 2019. https://doi.org/10.2139/ssrn.3356401
  13. [13] Z. Kepesiova, J. Ciganek, and S. Kozak, “Driver drowsiness detection using convolutional neural networks”, in 2020 Cybernetics & Informatics (K&I), Velke Karlovice, Czech Republic, Mar. 2020, pp. 1–6. https://doi.org/10.1109/KI48306.2020.9039851
  14. [14] R. Jabbar, M. Shinoy, M. Kharbeche, K. Al-Khalifa, M. Krichen, and K. Barkaoui, “Driver drowsiness detection model using convolutional neural networks techniques for android application”, in Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies, Doha, Qatar, May 2020, pp. 2–5. https://doi.org/10.1109/ICIoT48696.2020.9089484
DOI: https://doi.org/10.2478/acss-2022-0009 | Journal eISSN: 2255-8691 | Journal ISSN: 2255-8683
Language: English
Page range: 83 - 88
Published on: Aug 23, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Alper Aytekin, Vasfiye Mençik, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.