References
- [1] O. Ursulescu, B. Ilie, and G. Simion, “Driver drowsiness detection based on eye analysis”, in 2018 International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 2018, pp. 1–4. https://doi.org/10.1109/ISETC.2018.8583852
- [2] R. O. Mbouna, S. G. Kong, and M. G. Chun, “Visual analysis of eye state and head pose for driver alertness monitoring”, IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1462–1469, Sep. 2013. https://doi.org/10.1109/TITS.2013.2262098
- [3] S. Chinara,”Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal”, Journal of Neuroscience Methods, vol. 347, 2021, Art no. 108927. https://doi.org/10.1016/j.jneumeth.2020.10892732941920
- [4] M. Dua, R. Singla, S. Raj, and A. Jangra, “Deep CNN models-based ensemble approach to driver drowsiness detection”, Neural Computing and Applications, vol. 33, no. 8, pp. 3155–3168, Jul. 2021. https://doi.org/10.1007/s00521-020-05209-7
- [5] K. Dwivedi, K. Biswaranjan, and A. Sethi, “Drowsy driver detection using representation learning”, in Advance Computing Conference (IACC), Gurgaon, India, Mar. 2014, pp. 995–999. https://doi.org/10.1109/IAdCC.2014.6779459
- [6] S. Park, F. Pan, S. Kang, and C. D. Yoo, “Driver drowsiness detection system based on feature representation learning using various deep networks”, in Asian Conference on Computer Vision, Taipei, Taiwan, Nov. 2016, pp. 154–164. https://doi.org/10.1007/978-3-319-54526-4_12
- [7] S. Abtahi, M. Omidyeganeh, S. Shirmohammadi, and B. Hariri, “YawDD: A yawning detection dataset”, in Proceedings of the 5th ACM Multimedia Systems Conference, Singapore, Mar. 2014, pp. 24–28. https://doi.org/10.1145/2557642.2563678
- [8] D. Cireşan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image classification”, arXiv: 1202.2745, Tech Rep. No. IDSIA-04-12, Feb. 2012. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://arxiv.org/pdf/1202.2745.pdf
- [9] B. Boser, J. D. Y. Le Cun, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Handwritten digit recognition with a back-propagation network”, Advances in Neural Information Processing, vol. 2, 1989.
- [10] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, arXiv, preprint arXiv:1409.1556, 2014.
- [11] J. Gwak, A. Hirao, and M. Shino, “An investigation of early detection of driver drowsiness using ensemble machine learning based on hybrid sensing”, Appl. Sci., vol. 10, no. 8, Apr. 2020, Art no. 2890. https://doi.org/10.3390/app10082890
- [12] S. Mehta, S. Dadhich, S. Gumber, and A. J. Bhatt, “Real-time driver drowsiness detection system using eye aspect ratio and eye closure ratio”, in Proceedings of international conference on sustainable computing in science, technology and management (SUSCOM), Jaipur, India, Feb. 2019. https://doi.org/10.2139/ssrn.3356401
- [13] Z. Kepesiova, J. Ciganek, and S. Kozak, “Driver drowsiness detection using convolutional neural networks”, in 2020 Cybernetics & Informatics (K&I), Velke Karlovice, Czech Republic, Mar. 2020, pp. 1–6. https://doi.org/10.1109/KI48306.2020.9039851
- [14] R. Jabbar, M. Shinoy, M. Kharbeche, K. Al-Khalifa, M. Krichen, and K. Barkaoui, “Driver drowsiness detection model using convolutional neural networks techniques for android application”, in Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies, Doha, Qatar, May 2020, pp. 2–5. https://doi.org/10.1109/ICIoT48696.2020.9089484